DNA icon

Fanconi Anemia via the RAD51/FANCR Gene

Summary and Pricing

Test Method

Exome Sequencing with CNV Detection
Test Code Test Copy GenesTest CPT Code Gene CPT Codes Copy CPT Codes Base Price
RAD51 81479 81479,81479 $990
Test Code Test Copy Genes Test CPT Code Gene CPT Codes Copy CPT Code Base Price
11613RAD5181479 81479,81479 $990 Order Options and Pricing

An additional 25% charge will be applied to STAT orders. STAT orders are prioritized throughout the testing process.

Click here for costs to reflex to whole PGxome (if original test is on PGxome Sequencing platform).

Click here for costs to reflex to whole PGnome (if original test is on PGnome Sequencing platform).

Turnaround Time

3 weeks on average for standard orders or 2 weeks on average for STAT orders.

Please note: Once the testing process begins, an Estimated Report Date (ERD) range will be displayed in the portal. This is the most accurate prediction of when your report will be complete and may differ from the average TAT published on our website. About 85% of our tests will be reported within or before the ERD range. We will notify you of significant delays or holds which will impact the ERD. Learn more about turnaround times here.

Targeted Testing

For ordering sequencing of targeted known variants, go to our Targeted Variants page.


Genetic Counselors


  • Siwu Peng, PhD

Clinical Features and Genetics

Clinical Features

Fanconi Anemia (FA) is an inherited anemia associated with bone marrow failure (aplastic anemia). However, FA is also characterized by a range of other hematologic and physical abnormalities and predisposition to cancers - particularly acute myelogenous leukemia (AML), gynecologic and GI tract cancers, and cancers of the head and neck (Auerbach 2009). FA patients are up to 800 fold more susceptible to AML than the general population with a median age of onset of 13 years (Rosenberg et al. 2003). Physical abnormalities include radial ray defects (absent thumb or radius), skin pigmentation defects, short stature, microphthalmia, renal and urinary tract defects, genital defects (males in particular), gastrointestinal malformations (atresia), congenital heart disease, hearing and central nervous system defects, and general developmental delay (Tischkowitz and Hodgson 2003; Dokal 2000). About one-third of FA patients have no obvious physical abnormalities and are diagnosed only after a family member is diagnosed, or after developing hematologic abnormalities such as thromobocytopenia, leukopenia, or anemia (Giampietro et al. 1997). A hallmark of FA is hypersensitivity of chromosomes to inter cross-strand linkage (ICL) agents such as diepoxybutane (DEB) or mitomycin C (MMC) (Sasaki and Tonomura 1973). Exposure of primary cell cultures from FA patients to DEB or MMC results in chromosomal aberrations (breaks, radials, rearrangements) due to damaged DNA repair mechanisms that require functional products of the Fanconi anemia genes. For example, the FANCA, -B, -C, -E, -F, -G, -L, and -M proteins are part of a nuclear core complex that regulates monoubiquitination of the FANCD2 and FANCI proteins (ID complex) during S-phase and after exposure to DNA crosslinking agents (Moldovan and D'Andrea 2009). In unaffected individuals, ubiquitination helps localize the ID complex to sites of DNA damage and facilitate repair (Grompe and van de Vrugt 2007; Smogorzewska et al. 2007), but in FA patients, this mechanism is impaired.


FA is a genetically heterogeneous disorder. To date, 21 FA or FA-like genes have been identified. Inheritance is primarily autosomal recessive or X-linked, however one case of FA-like syndrome was associated with a dominant-negative pathogenic variant in the RAD51 (FANCR) gene (Ameziane et al. 2015). The RAD51 patient described in Ameziane et al. did not develop bone marrow failure or cancers that are typically associated with FA. Rather, this patient presented with multiple congenital anomalies including microcephaly, skeletal anomalies, hydrocephalus, imperforate anus, growth retardation, and learning disability. During DNA repair, the RAD51 protein plays a role in strand exchange during homologous recombination (Jasin and Rothstein 2013). Through a series of cell based and biochemical assays, Ameziane et al. showed that several functions of RAD51 protein are disrupted by the p.Ala293Thr substitution found in their patient; in particular the variant protein has decreased ATPase activity and lower DNA-binding affinity and acts as a dominant negative for the RAD51 protein. To date, only one RAD51/FANCR FA patient has been identified making RAD51 a rare cause of disease. Approximately 86% of all FA cases are attributed to variants in three genes: FANCA (~ 60%), FANCC (~ 16%), and FANCG (~ 10%) (Auerbach 2009). Since variants in FANCA are the most common cause of FA, it is important to note that large deletions make up over one-third of all reported variants in FANCA. In the United States, the carrier frequency for Fanconi anemia is estimated at 1 in 181 and the incidence rate is estimated at 1 in 131,000 (http://www.fanconi.org/; Rosenberg et al. 2011). Nearly 95% of all FA cases are attributed to variants in eight genes, FANCA, -C, -G, -D1 (aka BRCA2), -D2, -E, -F, and –L that are either part of the core complex required for ID complex ubiquitination and facilitation of DNA repair or function directly in ICL recognition and repair (Grompe and van de Vrugt 2007). FA is phenotypically diverse even among related patients that harbor a common variant; null alleles however are reported to result in more severe phenotypes (Faivre et al. 2000). FA affects males and females roughly equally and affects all ethnic groups.

Clinical Sensitivity - Sequencing with CNV PGxome

Over 95% of all Fanconi Anemia (FA) patients harbor pathogenic variants in one of the 21 known FA or FA-like genes (www.fanconi.org). To date, only one RAD51/FANCR FA patient has been identified making RAD51 a rare cause of disease.

Testing Strategy

This test provides full coverage of all coding exons of the RAD51 gene plus 10 bases of flanking noncoding DNA in all available transcripts along with other non-coding regions in which pathogenic variants have been identified at PreventionGenetics or reported elsewhere. We define full coverage as >20X NGS reads or Sanger sequencing. PGnome panels typically provide slightly increased coverage over the PGxome equivalent. PGnome sequencing panels have the added benefit of additional analysis and reporting of deep intronic regions (where applicable).

Dependent on the sequencing backbone selected for this testing, discounted reflex testing to any other similar backbone-based test is available (i.e., PGxome panel to whole PGxome; PGnome panel to whole PGnome).

Indications for Test

Patients with clinical features of FA, individuals with a family history of FA, and patients that develop aplastic anemia at any age, even if they present no physical abnormalities. This test is also indicated for potential bone marrow donors.


Official Gene Symbol OMIM ID
RAD51 179617
Inheritance Abbreviation
Autosomal Dominant AD
Autosomal Recessive AR
X-Linked XL
Mitochondrial MT


Name Inheritance OMIM ID
Fanconi Anemia, Complementation Group R AD 617244


  • Ameziane N. et al. 2015. Nature Communications. 6: 8829. PubMed ID: 26681308
  • Auerbach A.D. 2009. Mutation Research. 668: 4-10. PubMed ID: 19622403
  • Dokal I. 2000. Bailliere's Best Practice & Research. Clinical Haematology. 13: 407-25. PubMed ID: 11030042
  • Faivre L. et al. 2000. Blood. 96: 406470. PubMed ID: 11110674
  • Fanconi Anemia Research Fund, Inc.
  • Giampietro P.F. et al. 1997. American Journal of Medical Genetics. 68: 58-61. PubMed ID: 8986277
  • Grompe M., van de Vrugt H. 2007. Developmental Cell. 12: 661-2. PubMed ID: 17488615
  • Jasin M., Rothstein R. 2013. Cold Spring Harbor Perspectives in Biology. 5: a012740. PubMed ID: 24097900
  • Moldovan G.L, D'Andrea A.D. 2009. Annual Review of Genetics. 43: 223-49. PubMed ID: 19686080
  • Rosenberg P.S. et al. 2003. Blood. 101: 822-6. PubMed ID: 12393424
  • Rosenberg P.S. et al. 2011. American Journal of Medical Genetics. Part A. 155A: 1877-83. PubMed ID: 21739583
  • Sasaki M.S., Tonomura A. 1973. Cancer Research. 33: 1829-36. PubMed ID: 4352739
  • Smogorzewska A. et al. 2007. Cell. 129: 289-301. PubMed ID: 17412408
  • Tischkowitz M.D., Hodgson S.V. 2003. Journal of Medical Genetics. 40: 1-10. PubMed ID: 12525534


Ordering Options

We offer several options when ordering sequencing tests. For more information on these options, see our Ordering Instructions page. To view available options, click on the Order Options button within the test description.

myPrevent - Online Ordering

  • The test can be added to your online orders in the Summary and Pricing section.
  • Once the test has been added log in to myPrevent to fill out an online requisition form.
  • PGnome sequencing panels can be ordered via the myPrevent portal only at this time.

Requisition Form

  • A completed requisition form must accompany all specimens.
  • Billing information along with specimen and shipping instructions are within the requisition form.
  • All testing must be ordered by a qualified healthcare provider.

For Requisition Forms, visit our Forms page

If ordering a Duo or Trio test, the proband and all comparator samples are required to initiate testing. If we do not receive all required samples for the test ordered within 21 days, we will convert the order to the most effective testing strategy with the samples available. Prior authorization and/or billing in place may be impacted by a change in test code.

Specimen Types

Specimen Requirements and Shipping Details

PGxome (Exome) Sequencing Panel

PGnome (Genome) Sequencing Panel

loading Loading... ×


An error has occurred while calculating the price. Please try again or contact us for assistance.

View Ordering Instructions

1) Select Test Method (Platform)

1) Select Test Type

2) Select Additional Test Options

No Additional Test Options are available for this test.

Note: acceptable specimen types are whole blood and DNA from whole blood only.
Total Price: loading
Patient Prompt Pay Price: loading
A patient prompt pay discount is available if payment is made by the patient and received prior to the time of reporting.
Show Patient Prompt Pay Price
Copy Text to Clipboard