Congenital Fibrinogen Deficiency via the FGA Gene

Summary and Pricing

Test Method

Exome Sequencing with CNV Detection
Test Code Test Copy GenesTest CPT Code Gene CPT Codes Copy CPT Codes Base Price
8329 FGA 81479 81479,81479 $890 Order Options and Pricing
Test Code Test Copy Genes Test CPT Code Gene CPT Codes Copy CPT Code Base Price
8329FGA81479 81479(x2) $890 Order Options and Pricing

Pricing Comments

Our favored testing approach is exome based NextGen sequencing with CNV analysis. This will allow cost effective reflexing to PGxome or other exome based tests. However, if full gene Sanger sequencing is desired for STAT turnaround time, insurance, or other reasons, please see link below for Test Code, pricing, and turnaround time information. If the Sanger option is selected, CNV detection may be ordered through Test #600.

An additional 25% charge will be applied to STAT orders. STAT orders are prioritized throughout the testing process.

Click here for costs to reflex to whole PGxome (if original test is on PGxome Sequencing backbone).

Click here for costs to reflex to whole PGnome (if original test is on PGnome Sequencing backbone).

The Sanger Sequencing method for this test is NY State approved.

For Sanger Sequencing click here.

Turnaround Time

18 days on average for standard orders or 13 days on average for STAT orders.

Please note: Once the testing process begins, an Estimated Report Date (ERD) range will be displayed in the portal. This is the most accurate prediction of when your report will be complete and may differ from the average TAT published on our website. About 85% of our tests will be reported within or before the ERD range. We will notify you of significant delays or holds which will impact the ERD. Learn more about turnaround times here.

Targeted Testing

For ordering sequencing of targeted known variants, go to our Targeted Variants page.

EMAIL CONTACTS

Genetic Counselors

Geneticist

  • Siwu Peng, PhD

Clinical Features and Genetics

Clinical Features

Congenital fibrinogen deficiency (CFD) is a rare bleeding disorder, affecting about 1 in a million people, with wide variability in clinical presentation from asymptomatic to life-threatening bleeds. CFDs can be subdivided into type I (afibrinogenemia and hypofibrinogenemia) and type II deficiencies (dysfibrinogenemia and hypo-dysfibrinogenemia). Type I deficiencies are defined by individuals having reduced activity and levels of fibrinogen whereas type II individuals have normal fibrinogen levels but impaired function (Acharya and Dimichele 2008). Afibrinogenemia, the most severe form of CFD, typically presents in the neonatal period with umbilical cord bleeding being the most characteristic of disease. Bleeding tendencies are variable but include life-threatening spontaneous and trauma related bleeds. Patients with hypofibrinogenemia have a milder disease course, as loss of fibrinogen protein is less severe than individuals with afibrinogenemia. Bleeding episodes in these individuals occur later in life and often occur after trauma or surgery. Patients with dysfibrinogenemia are primarily asymptomatic but may experience bleeding after trauma or child birth (de Moerloose et al. 2013). Unlike type I deficiencies, individuals with type II deficiencies have been reported to be at increased risk of thrombosis (Morris et al. 2009). Acquired fibrinogen deficiencies have been found in individuals with liver disease and autoantibodies (Kujovich 2005; Dear et al. 2007). Genetic testing is helpful in differential diagnosis of other rare bleeding disorders, distinguishing inherited and acquired forms, and for diagnosis of asymptomatic hypofibrinogenemia and dysfibrinogenemia patients prior to surgery. Treatment options include fibrinogen concentrates, cryoprecipitate, and fresh frozen plasma (Acharya and Dimichele 2008).

Genetics

CFD is caused through mutations in the FGA, FGB, or FGG genes. Together these genes encode the hexameric glycoprotein fibrinogen. Onset of afibrinogenemia, hypofibrinogenemia, and dysfibrinogenemia can occur through mutations in any of the three fibrinogen genes. Afibrinogenemia is inherited in an autosomal recessive manner with null mutations accounting for the majority of causative variants. Hypofibrinogenemia and dysfibrinogenemia are inherited in autosomal dominant manners with reduced disease penetrance predominantly due to missense mutations (de Moerloose et al. 2013). Severity of CFD is directly correlative to degree of impaired fibrinogen level and function. Causative mutations for afibrinogenemia and hypofibrinogenemia can overlap with the mutations that cause recessive afibrinogenemia. Thus, asymptomatic individuals with hypofibrinogenemia often are carriers for afibrinogenemia (Acharya and Dimichele 2008). Mutations in the FGA gene account for ~65% of CFD cases. Nonsense mutations are most frequently identified as causative variants in the FGA gene for afibrinogenemia followed by large deletions, frameshift, and splice site alterations (Neerman-Arbez et al. 1999). Missense mutations in the FGA gene are often causative for dysfibrinogenemia (Acharya and Dimichele 2008). Fibrinogen is synthesized in the liver as a disulphide linked hexamer comprised of two heterotrimers each consisting of one alpha, beta and gamma chain. Fibrinogen is catalyzed into fibrin by thrombin to promote blood clot formation through platelet bridging (Acharya and Dimichele 2008).

Clinical Sensitivity - Sequencing with CNV PGxome

Rare bleeding disorders (RBD) are comprised of inherited deficiencies of coagulation factors fibrinogen, FII, FV, FV + FVIII, FVII, FX, FXI, and FXIII. CFDs are found ~8% of all RBD cases (Peyvandi et al. 2013). In patients with CFD, causative FGA mutations are found in >65% of cases (Hanss and Biot 2001). Analytical sensitivity is >80% as the majority of causative variants are detectable by sequencing. Large deletions in the FGA gene have been reported for afibrinogenemia (Neerman-Arbez et al. 1999).

Testing Strategy

This test provides full coverage of all coding exons of the FGA gene plus 10 bases of flanking noncoding DNA in all available transcripts along with other non-coding regions in which pathogenic variants have been identified at PreventionGenetics or reported elsewhere. We define full coverage as >20X NGS reads or Sanger sequencing. PGnome panels typically provide slightly increased coverage over the PGxome equivalent. PGnome sequencing panels have the added benefit of additional analysis and reporting of deep intronic regions (where applicable).

Dependent on the sequencing backbone selected for this testing, discounted reflex testing to any other similar backbone-based test is available (i.e., PGxome panel to whole PGxome; PGnome panel to whole PGnome).

Indications for Test

Candidates have decreased levels of fibrinogen antigen and activity (less than 0.5 g L-1) for type I CFD. Type II individuals present with discrepancies between antigen and activity measurements. All coagulation tests that depend on fibrin as an end point (PT, PPT, TT, and reptilase time) are typically prolonged. Patients with a family history of hypofibrinogenemia and dysfibrinogenemia are ideal candidates for testing (Acharya and Dimichele 2008). This test may also be considered for the reproductive partners of individuals who carry pathogenic variants in FGA.

Gene

Official Gene Symbol OMIM ID
FGA 134820
Inheritance Abbreviation
Autosomal Dominant AD
Autosomal Recessive AR
X-Linked XL
Mitochondrial MT

Disease

Name Inheritance OMIM ID
Afibrinogenemia, congenital AR 202400

Citations

  • Acharya SS, Dimichele DM. 2008. Rare inherited disorders of fibrinogen. Haemophilia 14: 1151–1158. PubMed ID: 19141154
  • de Moerloose P, Casini A, Neerman-Arbez M. 2013. Congenital fibrinogen disorders: an update. Semin. Thromb. Hemost. 39: 585–595. PubMed ID: 23852822
  • Dear A, Brennan SO, Sheat MJ, Faed JM, George PM. 2007. Acquired dysfibrinogenemia caused by monoclonal production of immunoglobulin lambda light chain. Haematologica 92: e111–117. PubMed ID: 18024387
  • Hanss M, Biot F. 2001. A database for human fibrinogen variants. Ann. N. Y. Acad. Sci. 936: 89–90. PubMed ID: 11460527
  • Kujovich JL. 2005. Hemostatic defects in end stage liver disease. Crit Care Clin 21: 563–587. PubMed ID: 15992673
  • Morris TA, Marsh JJ, Chiles PG, Magaña MM, Liang N-C, Soler X, Desantis DJ, Ngo D, Woods VL Jr. 2009. High prevalence of dysfibrinogenemia among patients with chronic thromboembolic pulmonary hypertension. Blood 114: 1929–1936. PubMed ID: 19420351
  • Neerman-Arbez M, Honsberger A, Antonarakis SE, Morris MA. 1999. Deletion of the fibrinogen [correction of fibrogen] alpha-chain gene (FGA) causes congenital afibrogenemia. J. Clin. Invest. 103: 215–218. PubMed ID: 9916133
  • Peyvandi F. et al. 2013. Blood. 122: 3423-31. PubMed ID: 24124085

Ordering/Specimens

Ordering Options

We offer several options when ordering sequencing tests. For more information on these options, see our Ordering Instructions page. To view available options, click on the Order Options button within the test description.

myPrevent - Online Ordering

  • The test can be added to your online orders in the Summary and Pricing section.
  • Once the test has been added log in to myPrevent to fill out an online requisition form.
  • PGnome sequencing panels can be ordered via the myPrevent portal only at this time.

Requisition Form

  • A completed requisition form must accompany all specimens.
  • Billing information along with specimen and shipping instructions are within the requisition form.
  • All testing must be ordered by a qualified healthcare provider.

For Requisition Forms, visit our Forms page


Specimen Types

Specimen Requirements and Shipping Details

PGxome (Exome) Sequencing Panel

PGnome (Genome) Sequencing Panel

loading Loading... ×

ORDER OPTIONS

View Ordering Instructions

1) Select Test Method (Backbone)


1) Select Test Type


2) Select Additional Test Options

STAT and Prenatal Test Options are not available with Patient Plus.

No Additional Test Options are available for this test.

Note: acceptable specimen types are whole blood and DNA from whole blood only.
Total Price: $
×
Copy Text to Clipboard
×