DNA icon

Autosomal Dominant Polycystic Kidney Disease via MLPA of PKD1

Summary and Pricing

Test Method

Multiplex Ligation-Dependent Probe Amplification Assay
Test Code Test Copy GenesTest CPT Code Gene CPT Codes Copy CPT Codes Base Price
PKD1 81479 81479 $540
Test Code Test Copy Genes Test CPT Code Gene CPT Codes Copy CPT Code Base Price
2058PKD181479 81479 $540 Order Options and Pricing

Pricing Comments

Deletion and duplication analysis of PKD1 is performed using two commercial multiplex ligation-dependent amplification (MLPA) kits (MLPA P351-C1 and P352-D1 probemixes; MRC-Holland). The MLPA P351-C1 and P352-D1 probemixes used for this test do not contain probes for exons 1, 2, 4, 8, 17, 24, 28, 32, 34 and 45. Therefore, a deletion or duplication of a single exon in these regions cannot be detected.

An additional 25% charge will be applied to STAT orders. STAT orders are prioritized throughout the testing process.

Turnaround Time

3 weeks on average for standard orders or 2 weeks on average for STAT orders.

Please note: Once the testing process begins, an Estimated Report Date (ERD) range will be displayed in the portal. This is the most accurate prediction of when your report will be complete and may differ from the average TAT published on our website. About 85% of our tests will be reported within or before the ERD range. We will notify you of significant delays or holds which will impact the ERD. Learn more about turnaround times here.

Targeted Testing

For ordering sequencing of targeted known variants, go to our Targeted Variants page.


Genetic Counselors


  • Wuyan Chen, PhD

Clinical Features and Genetics

Clinical Features

Autosomal dominant polycystic kidney disease (ADPKD) is a common inherited kidney disease with multisystem involvement. ADPKD is characterized by bilateral renal cysts accompanied by cysts in other organs including the liver, seminal vesicles, pancreas, and arachnoid membrane (Harris et al. 2011. PubMed ID: 20301424). Renal symptoms include hypertension, renal pain, and renal insufficiency. Nearly half of ADPKD patients have end-stage renal disease (ESRD) by age 60 years. The progressive growth of liver cysts is the most common extrarenal manifestation of ADPKD. The most important non-cystic manifestations of ADPKD are vascular and cardiac abnormalities including intracranial aneurysms, mitral valve prolapse, dilatation of the aortic root, dissection of the thoracic aorta, and abdominal wall hernias. The clinical spectrum of ADPKD is wide and substantial variability of disease severity can occur even within the same family.

Patients with ADPKD typically have onset of symptoms in adulthood. In some rare cases, however, patients with bi-allelic PKD1 variants may have clinical features similar to those of patients with autosomal recessive polycystic kidney disease (ARPKD) (caused by bi-allelic variants in the PKHD1 gene) (Rossetti et al. 2009. PubMed ID: 19165178; Vujic et al. 2010. PubMed ID: 20558538; Audrézet et al. 2016. PubMed ID: 26139440). In these rare cases, symptoms may appear in early childhood or even in utero.


PKD1 and PKD2 are the two major causative genes for ADPKD (Rossetti et al. 2007. PubMed ID: 17582161; Audrézet et al. 2012. PubMed ID: 22508176). Accounting for a small fraction of ADPKD cases, GANAB and DNAJB11 are newly implicated in ADPKD (Porath et al. 2016. PubMed ID: 27259053; Cornec-Le Gall et al. 2018. PubMed ID: 29706351).

PKD1 (46 coding exons) encodes a member of the polycystin protein family, which plays an important role in renal tubular development. Genetic defects of PKD1 account for approximately 85% of genetically positive ADPKD cases and have been found across the whole coding region of the gene (Rossetti et al. 2007. PubMed ID: 17582161; Audrézet et al. 2012. PubMed ID: 22508176). In addition to missense substitutions and small in-frame changes, truncating changes (nonsense, canonical splice variants and frame-shifting small deletion/insertions) are the majority of PKD1 defects. Gross deletions have been also reported, but are relatively rare (<4% of pathogenic variants) (Ariyurek et al. 2004. PubMed ID: 14695542; Rossetti et al. 2007. PubMed ID: 17582161; Audrézet et al. 2012. PubMed ID: 22508176). The majority of PKD1 defects were found in single patients (Audrézet et al. 2012. PubMed ID: 22508176). De novo pathogenic variants account for about 10% of individuals with ADPKD in adulthood (Neumann et al. 2012. PubMed ID: 22367170).

Clinical Sensitivity - MLPA

Large deletions in PKD1 are relatively rare (Ariyurek et al. 2004; Rossetti et al. 2007; Audre'zet et al. 2012).

Testing Strategy

As required, genomic DNA (gDNA) is extracted from the patient specimen. gDNA extracted from blood samples/submitted DNA from the patient is denatured and hybridized to MLPA probes specific to exonic or intronic regions of a particular gene(s). Each probe consists of two adjacent sequences that once hybridized to patient/reference DNA are ligated into a single probe. Fluorescently labeled PCR is then used to amplify each ligated probe using a common PCR primer set. The amplicon is then visualized during fragment separation using a capillary electrophoresis instrument. The relative peak height of each amplified probe from the patient’s sample is compared to four internal negative control results to determine relative copy number. For each patient sample the data for only the gene of interest is analyzed and reported.

Indications for Test

Candidates for this test are patients with ADPKD. Testing is also indicated for family members of patients who have known PKD1 pathogenic variants.


Official Gene Symbol OMIM ID
PKD1 601313
Inheritance Abbreviation
Autosomal Dominant AD
Autosomal Recessive AR
X-Linked XL
Mitochondrial MT


Name Inheritance OMIM ID
Polycystic Kidney Disease 1 AD 173900


  • Ariyurek et al. 2004. PubMed ID: 14695542
  • Audrézet et al. 2012. PubMed ID: 22508176
  • Audrézet et al. 2016. PubMed ID: 26139440
  • Bataille et al. 2011. PubMed ID: 22008521
  • Cornec-Le Gall et al. 2018. PubMed ID: 29706351
  • Harris et al. 2011. PubMed ID: 20301424
  • Neumann et al. 2012. PubMed ID: 22367170
  • Porath et al. 2016. PubMed ID: 27259053
  • Rossetti et al. 2007. PubMed ID: 17582161
  • Rossetti et al. 2009. PubMed ID: 19165178
  • Vujic et al. 2010. PubMed ID: 20558538


Ordering Options

We offer several options when ordering sequencing tests. For more information on these options, see our Ordering Instructions page. To view available options, click on the Order Options button within the test description.

myPrevent - Online Ordering

  • The test can be added to your online orders in the Summary and Pricing section.
  • Once the test has been added log in to myPrevent to fill out an online requisition form.
  • PGnome sequencing panels can be ordered via the myPrevent portal only at this time.

Requisition Form

  • A completed requisition form must accompany all specimens.
  • Billing information along with specimen and shipping instructions are within the requisition form.
  • All testing must be ordered by a qualified healthcare provider.

For Requisition Forms, visit our Forms page

Specimen Types

Specimen Requirements and Shipping Details

loading Loading... ×


An error has occurred while calculating the price. Please try again or contact us for assistance.

View Ordering Instructions

1) Select Test Method (Platform)

1) Select Test Type

2) Select Additional Test Options

No Additional Test Options are available for this test.

Note: acceptable specimen types are whole blood and DNA from whole blood only.
Total Price: loading
Patient Prompt Pay Price: loading
A patient prompt pay discount is available if payment is made by the patient and received prior to the time of reporting.
Show Patient Prompt Pay Price
Copy Text to Clipboard