Familial Hypercholesterolemia via the LDLR Gene

  • Summary and Pricing
  • Clinical Features and Genetics
  • Citations
  • Methods
  • Ordering/Specimens
Order Kits


Test Code Test Copy GenesPriceCPT Code Copy CPT Codes
4953 LDLR$640.00 81406 Add to Order
Pricing Comments

Our most cost-effective testing approach is NextGen sequencing with Sanger sequencing supplemented as needed to ensure sufficient coverage and to confirm NextGen calls that are pathogenic, likely pathogenic or of uncertain significance. If, however, full gene Sanger sequencing only is desired (for purposes of insurance billing or STAT turnaround time for example), please see link below for Test Code, pricing, and turnaround time information.

For Sanger Sequencing click here.
Targeted Testing

For ordering sequencing of targeted known variants, please proceed to our Targeted Variants landing page.

Turnaround Time

The great majority of tests are completed within 20 days.

Clinical Sensitivity

Mutations in LDLR are the most common cause of FH followed by mutations in APOB and PCSK9. The exact proportion of mutations within these genes varies among populations, but data from several studies indicate the contribution of LDLR, APOB, and PCSK9 mutations to FH cases ranges from 37-82%, 0-7%, and 0-3%, respectively (Varret et al. Clin Genet 73:1, 2008).

See More

See Less

CNV via aCGH

Test Code Test Copy GenesPriceCPT Code Copy CPT Codes
600 LDLR$990.00 81405 Add to Order
Pricing Comments

# of Genes Ordered

Total Price









Over 100

Call for quote

Targeted Testing

For ordering sequencing of targeted known variants, please proceed to our Targeted Variants landing page.

Turnaround Time

The great majority of tests are completed within 20 days.

Clinical Sensitivity

Mutations are found throughout LDLR and comprise mostly missense/nonsense mutations, but splicing mutations and deletions and insertions are also common with ~ 15% of mutations being large deletions or insertions (Human Gene Mutation Database).

See More

See Less

Clinical Features

Familial Hypercholesterolemia (FH) is characterized by elevated serum levels of total cholesterol. It is primarily recognized clinically by severely elevated levels of low density lipoprotein (LDL) cholesterol. Typically, high LDL is considered anything above 160 mg/dL in persons under 20 years of age, and anything above 190 mg/dL in adults over 20 years of age (Hopkins et al. 2011). Accumulation of LDL can cause early onset atherosclerosis and increases the risk of coronary heart disease (CHD) by approximately 20% (Hopkins et al. 2011; Austin et al. 2004). By age 50, approximately 45% of male and 20% of female FH patients suffer from coronary artery disease (Goldstein et al. 2001). Other symptoms of FH include fatty skin deposits called xanthomas, cholesterol deposits in the eyelids, and chest pains associated with coronary artery disease. FH is present from birth and is phenotypically heterogeneous. Patients with FH often respond well to drug treatment, i.e. statins, and to lifestyle changes, including increased exercise and diets low in saturated fats, making early risk assessment and diagnosis very beneficial.


Familial Hypercholesterolemia is associated with heterozygous or homozygous mutations in one of three known genes: LDLR, APOB, and PCSK9. In general, heterozygous mutations in any one of these genes can result in a 2-3 fold increase in plasma LDL and a dramatically increased risk of heart disease compared to unaffected individuals. Homozygous or compound heterozygous patients are rare and generally have a much more severe phenotype with an early onset. The prevalence of heterozygous FH is around 1:500 in the U.S. Caucasian population and is similar for most European populations (Goldstein et al. J Clin Invest 52:1544, 1973; Vuorio et al. Arterioscler Thromb Vasc Biol 17:3127, 1997; Slack, J. Atheroscler Rev 5:35, 1979; Kalina et al. Atherosclerosis 154:247, 2001; summarized in Austin et al. Am J Epidemial 160:407, 2004). FH is particularly common among populations of African ancestry which have a reported prevalence as high as 1/67 (Austin et al. Am J Epidemial 160:407, 2004). Most cases of FH are attributed to loss-of-function mutations in LDLR (van Aalst-Cohen et al. Eur Heart J 27:2440, 2006) which encodes the LDL receptor. Loss of LDL receptor function impedes LDL endocytosis and causes deposition of LDL within the body that contributes to atherosclerosis and xanthomas (Hobbs et al. Annu Rev Genet 24:133, 1990; Varret et al. Clin Genet 73:1, 2008). Nearly 1800 causative mutations in LDLR have been reported. Mutations are found throughout LDLR and comprise mostly missense/nonsense mutations, but splicing mutations and deletions and insertions are also common with ~ 15% of mutations being large deletions or insertions (Human Gene Mutation Database).

Testing Strategy

For this NextGen test, the full coding regions plus ~10 bp of non-coding DNA flanking each exon are sequenced for the gene listed below. Sequencing is accomplished by capturing specific regions with an optimized solution-based hybridization kit, followed by massively parallel sequencing of the captured DNA fragments. Additional Sanger sequencing is performed for any regions not captured or with insufficient number of sequence reads.

Indications for Test

Patients with high levels of LDL, and/or a strong family history of hypercholesterolemia or heart attacks. Patients with xanthomas and angina.


Official Gene Symbol OMIM ID
LDLR 606945
Inheritance Abbreviation
Autosomal Dominant AD
Autosomal Recessive AR
X-Linked XL
Mitochondrial MT


Name Inheritance OMIM ID
Familial Hypercholesterolemia 143890


Genetic Counselors
  • Austin MA, Hutter CM, Zimmern RL, Humphries SE. 2004. Genetic causes of monogenic heterozygous familial hypercholesterolemia: a HuGE prevalence review. Am. J. Epidemiol. 160: 407–420. PubMed ID: 15321837
  • Goldstein et al. 2001. In: The Metabolic and Molecular Basis of Inherited Disease - 8th edition (edited by C.R. Scriver et al.) New York: McGraw-Hill. 
  • Goldstein et al., (1973) "Hyperlipidemia in coronary heart disease. I. Lipid levels in 500 survivors of myocardial infarction." J Clin Invest 1533-43. PubMed ID: 4718952
  • Hobbs HH, Russell DW, Brown MS, Goldstein JL. 1990. The LDL receptor locus in familial hypercholesterolemia: mutational analysis of a membrane protein. Annual review of genetics 24: 133–170. PubMed ID: 2088165
  • Hopkins PN, Toth PP, Ballantyne CM, Rader DJ, National Lipid Association Expert Panel on Familial Hypercholesterolemia. 2011. Familial hypercholesterolemias: prevalence, genetics, diagnosis and screening recommendations from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J Clin Lipidol 5: S9–17. PubMed ID: 21600530
  • Human Gene Mutation Database (Bio-base).
  • Kalina A, Császár A, Czeizel AE, Romics L, Szabóki F, Szalai C, Reiber I, Németh A, Stephenson S, Williams RR. 2001. Frequency of the R3500Q mutation of the apolipoprotein B-100 gene in a sample screened clinically for familial hypercholesterolemia in Hungary. Atherosclerosis 154: 247–251. PubMed ID: 11137107
  • Slack, J. 1979. Inheritance of familial hypercholesterolemia. Atheroscler Rev 5:35-66.
  • van Aalst-Cohen, Jansen AC, Tanck MW, Defesche JC, Trip MD, Lansberg PJ, Stalenhoef AF, Kastelein JJ.. 2006. Diagnosing familial hypercholesterolaemia: the relevance of genetic testing. European Heart Journal 27: 2240–2246. PubMed ID: 16825289
  • Varret M, Abifadel M, Rabès J-P, Boileau C. 2008. Genetic heterogeneity of autosomal dominant hypercholesterolemia. Clinical Genetics 73: 1–13. PubMed ID: 18028451
  • Vuorio AF, Turtola H, Piilahti KM, Repo P, Kanninen T, Kontula K. 1997. Familial hypercholesterolemia in the Finnish north Karelia. A molecular, clinical, and genealogical study. Arterioscler. Thromb. Vasc. Biol. 17: 3127–3138. PubMed ID: 9409302
Order Kits

NextGen Sequencing using PG-Select Capture Probes

Test Procedure

We use a combination of Next Generation Sequencing (NGS) and Sanger sequencing technologies to cover the full coding regions of the listed genes plus ~10 bases of non-coding DNA flanking each exon.  As required, genomic DNA is extracted from the patient specimen.  For NGS, patient DNA corresponding to these regions is captured using an optimized set of DNA hybridization probes.  Captured DNA is sequenced using Illumina’s Reversible Dye Terminator (RDT) platform (Illumina, San Diego, CA, USA).  Regions with insufficient coverage by NGS are often covered by Sanger sequencing.

For Sanger sequencing, Polymerase Chain Reaction (PCR) is used to amplify targeted regions.  After purification of the PCR products, cycle sequencing is carried out using the ABI Big Dye Terminator v.3.0 kit.  PCR products are resolved by electrophoresis on an ABI 3730xl capillary sequencer.  In nearly all cases, cycle sequencing is performed separately in both the forward and reverse directions.

Patient DNA sequence is aligned to the genomic reference sequence for the indicated gene region(s). All differences from the reference sequences (sequence variants) are assigned to one of five interpretation categories, listed below, per ACMG Guidelines (Richards et al. 2015).

(1) Pathogenic Variants
(2) Likely Pathogenic Variants
(3) Variants of Uncertain Significance
(4) Likely Benign Variants
(5) Benign Variants

Human Genome Variation Society (HGVS) recommendations are used to describe sequence variants (  Rare variants and undocumented variants are nearly always classified as likely benign if there is no indication that they alter protein sequence or disrupt splicing.

Analytical Validity

As of March 2016, 6.36 Mb of sequence (83 genes, 1557 exons) generated in our lab was compared between Sanger and NextGen methodologies. We detected no differences between the two methods. The comparison involved 6400 total sequence variants (differences from the reference sequences). Of these, 6144 were nucleotide substitutions and 256 were insertions or deletions. About 65% of the variants were heterozygous and 35% homozygous. The insertions and deletions ranged in length from 1 to over 100 nucleotides.

In silico validation of insertions and deletions in 20 replicates of 5 genes was also performed. The validation included insertions and deletions of lengths between 1 and 100 nucleotides. Insertions tested in silico: 2200 between 1 and 5 nucleotides, 625 between 6 and 10 nucleotides, 29 between 11 and 20 nucleotides, 25 between 21 and 49 nucleotides, and 23 at or greater than 50 nucleotides, with the largest at 98 nucleotides. All insertions were detected. Deletions tested in silico: 1813 between 1 and 5 nucleotides, 97 between 6 and 10 nucleotides, 32 between 11 and 20 nucleotides, 20 between 21 and 49 nucleotides, and 39 at or greater than 50 nucleotides, with the largest at 96 nucleotides. All deletions less than 50 nucleotides in length were detected, 13 greater than 50 nucleotides in length were missed. Our standard NextGen sequence variant calling algorithms are generally not capable of detecting insertions (duplications) or heterozygous deletions greater than 100 nucleotides. Large homozygous deletions appear to be detectable.   

Analytical Limitations

Interpretation of the test results is limited by the information that is currently available.  Better interpretation should be possible in the future as more data and knowledge about human genetics and this specific disorder are accumulated.

When Sanger sequencing does not reveal any difference from the reference sequence, or when a sequence variant is homozygous, we cannot be certain that we were able to detect both patient alleles.  Occasionally, a patient may carry an allele which does not amplify, due to a large deletion or insertion.   In these cases, the report will contain no information about the second allele.  Our Sanger and NGS Sequencing tests are generally not capable of detecting Copy Number Variants (CNVs).

We sequence all coding exons for each given transcript, plus ~10 bp of flanking non-coding DNA for each exon.  Test reports contain no information about other portions of the gene, such as regulatory domains, deep intronic regions or any currently uncharacterized alternative exons.

In most cases, we are unable to determine the phase of sequence variants.  In particular, when we find two likely causative mutations for recessive disorders, we cannot be certain that the mutations are on different alleles.

Our ability to detect minor sequence variants due to somatic mosaicism is limited.  Sequence variants that are present in less than 50% of the patient’s nucleated cells may not be detected.

Runs of mononucleotide repeats (eg (A)n or (T)n) with n >8 in the reference sequence are generally not analyzed because of strand slippage during PCR.

Unless otherwise indicated, DNA sequence data is obtained from a specific cell-type (usually leukocytes from whole blood).   Test reports contain no information about the DNA sequence in other cell-types.

We cannot be certain that the reference sequences are correct.

Rare, low probability interpretations of sequencing results, such as for example the occurrence of de novo mutations in recessive disorders, are generally not included in the reports.

We have confidence in our ability to track a specimen once it has been received by PreventionGenetics.  However, we take no responsibility for any specimen labeling errors that occur before the sample arrives at PreventionGenetics.

Deletion/Duplication Testing via Array Comparative Genomic Hybridization

Test Procedure

Equal amounts of genomic DNA from the patient and a gender matched reference sample are amplified and labeled with Cy3 and Cy5 dyes, respectively. To prevent any sample cross contamination, a unique sample tracking control is added into each patient sample. Each labeled patient product is then purified, quantified, and combined with the same amount of reference product. The combined sample is loaded onto the designed array and hybridized for at least 22-42 hours at 65°C. Arrays are then washed and scanned immediately with 2.5 µM resolution. Only data for the gene(s) of interest for each patient are analyzed.

Analytical Validity

PreventionGenetics' high density gene-centric custom designed aCGH enables the detection of relatively small deletions and duplications within a single exon of a given gene or deletions and duplications encompassing the entire gene.

Analytical Limitations

Our dense probe coverage may allow detection of deletions/duplications down to 100 bp; however due to limitations and probe spacing this cannot be guaranteed across all exons of all genes. Therefore, some copy number changes smaller than 100-300 bp within a targeted large exon may not be detected by our array.

This array may not detect deletions and duplications present at low levels of mosaicism or those present in genes that have pseudogene copies or repeats elsewhere in the genome.

aCGH will not detect balanced translocations, inversions, or point mutations that may be responsible for the clinical phenotype.

In the case of duplications, aCGH will not determine the chromosomal location of the duplicated DNA. Most duplications will be tandem, but in some cases the duplicated DNA will be inserted at a different locus. This method will also not determine the orientation of the duplicated segment (direct or inverted).

Breakpoints, if occurring outside the targeted gene, may be hard to define.

The sensitivity of this assay is dependent upon the quality of the input DNA. In particular, highly degraded DNA will yield poor results.

Order Kits

Ordering Options

myPrevent - Online Ordering
  • The test can be added to your online orders in the Summary and Pricing section.
  • Once the test has been added log in to myPrevent to fill out an online requisition form.
  • A completed requisition form must accompany all specimens.
  • Billing information along with specimen and shipping instructions are within the requisition form.
  • All testing must be ordered by a qualified healthcare provider.


(Delivery accepted Monday - Saturday)

  • Collect 3 ml -5 ml (5 ml preferred) of whole blood in EDTA (purple top tube) or ACD (yellow top tube). For Test #500-DNA Banking only, collect 10 ml -20 ml of whole blood.
  • For small babies, we require a minimum of 1 ml of blood.
  • Only one blood tube is required for multiple tests.
  • Ship blood tubes at room temperature in an insulated container. Do not freeze blood.
  • During hot weather, include a frozen ice pack in the shipping container. Place a paper towel or other thin material between the ice pack and the blood tube.
  • In cold weather, include an unfrozen ice pack in the shipping container as insulation.
  • At room temperature, blood specimen is stable for up to 48 hours.
  • If refrigerated, blood specimen is stable for up to one week.
  • Label the tube with the patient name, date of birth and/or ID number.


(Delivery accepted Monday - Saturday)

  • Send in screw cap tube at least 5 µg -10 µg of purified DNA at a concentration of at least 20 µg/ml for NGS and Sanger tests and at least 5 µg of purified DNA at a concentration of at least 100 µg/ml for gene-centric aCGH, MLPA, and CMA tests, minimum 2 µg for limited specimens.
  • For requests requiring more than one test, send an additional 5 µg DNA per test ordered when possible.
  • DNA may be shipped at room temperature.
  • Label the tube with the composition of the solute, DNA concentration as well as the patient’s name, date of birth, and/or ID number.
  • We only accept genomic DNA for testing. We do NOT accept products of whole genome amplification reactions or other amplification reactions.


(Delivery preferred Monday - Thursday)

  • PreventionGenetics should be notified in advance of arrival of a cell culture.
  • Culture and send at least two T25 flasks of confluent cells.
  • Some panels may require additional flasks (dependent on size of genes, amount of Sanger sequencing required, etc.). Multiple test requests may also require additional flasks. Please contact us for details.
  • Send specimens in insulated, shatterproof container overnight.
  • Cell cultures may be shipped at room temperature or refrigerated.
  • Label the flasks with the patient name, date of birth, and/or ID number.
  • We strongly recommend maintaining a local back-up culture. We do not culture cells.
loading Loading... ×

Copy Text to Clipboard