Forms

Congenital Cataracts via the BFSP1 Gene

  • Summary and Pricing
  • Clinical Features and Genetics
  • Citations
  • Methods
  • Ordering/Specimens
Order Kits
TEST METHODS

Sequencing

Test Code Test Copy GenesIndividual Gene PriceCPT Code Copy CPT Codes
2267 BFSP1$780.00 81479 Add to Order
Targeted Testing

For ordering targeted known variants, please proceed to our Targeted Variants landing page.

Turnaround Time

The great majority of tests are completed within 18 days.

Clinical Sensitivity

Predicting clinical sensitivity for the BFSP1 gene is challenging due to genetic heterogeneity of cataracts and also due to the limited number of BFSP1-associated cataract cases.

See More

See Less

Clinical Features

Cataracts are described as opacification of the crystalline lens of the eye that result in abnormal refraction index and light scattering. Congenital cataracts (CC) are a serious and leading cause of reversible blindness in childhood. They account for one-tenth of the cases of childhood blindness (Francis and Moore 2004). Estimated prevalence rate is 1.2 - 6.0 per 10,000 live births. Early diagnosis and surgery and optical correction have resulted in an improved outcome for infants with either unilateral or bilateral cataracts (Lambert and Drack 1996). 

Genetics

Only 10–25% of congenital cataracts are hereditary. Cataracts are most often inherited as an autosomal dominant trait. CC also exhibit autosomal recessive or X-linked inheritance (Hejtmancik 2008). X-linked cataract is seen in Nance-Horan syndrome (NHS), which is an especially rare disorder. NHS has cataracts along with prominent dental findings, dysmorphic features, and intellectual disability (Toutain et al. 1997; Stambolian et al. 1990). Currently, isolated or primary cataracts have been mapped to about 39 genetic loci, and over 25 of those are connected to pathogenic variants in specific genes. However, this number is constantly increasing (Hejtmancik 2008).

Pathogenic variants in BFSP1 are causative for autosomal dominant and recessive congenital cataracts (Wang et al. 2013; Ramachandran et al. 2007). So far only two causative variants (one missense and one gross deletion) in BFSP1 have been reported. Mutation analysis in a five-generation Chinese family, affected by autosomal dominant cataracts, identified a missense variant c.1042G>A (p.Asp348Asn) in all the affected family members, which was not seen in unaffected family members and in 200 unrelated controls (Wang et al. 2013). Linkage analysis in another family identified a gross deletion (exon 6) in BFSP1. All affected family members in that family were homozygous for the deletion, and carriers are unaffected (Ramachandran et al. 2007). It is difficult to conclude what type of variants cause dominant  or recessive cataracts, with the limited number of cases. BFSP1 encodes lens-specific intermediate filament protein called beaded filament structural protein 1.

Testing Strategy

This test involves bidirectional DNA Sanger sequencing of all coding exons and ~ 20 bp of flanking noncoding sequence of the BFSP1 gene.  We will also sequence any single exon (Test #100) or pair of exons (Test #200) in family members of patients with known mutations or to confirm research results.

Indications for Test

All patients with symptoms suggestive of Congenital Cataracts are candidates.

Gene

Official Gene Symbol OMIM ID
BFSP1 603307
Inheritance Abbreviation
Autosomal Dominant AD
Autosomal Recessive AR
X-Linked XL
Mitochondrial MT

Disease

Name Inheritance OMIM ID
Cataract 33 611391

CONTACTS

Genetic Counselors
Geneticist
Citations
  • Francis P.J., Moore A.T. 2004. Current opinion in ophthalmology. 15: 10-5. PubMed ID: 14743013
  • Hejtmancik J.F. 2008. Seminars in cell & developmental biology. 19: 134-49. PubMed ID: 18035564
  • Lambert S.R., Drack A.V. 1996. Survey of ophthalmology. 40: 427-58. PubMed ID: 8724637
  • Ramachandran R.D. et al. 2007. Human Genetics. 121: 475-82.  PubMed ID: 17225135
  • Song S. et al. 2009. The Journal of Clinical Investigation. 119: 1837-48. PubMed ID: 19587458
  • Stambolian D. et al. 1990. American journal of human genetics. 47: 13-9. PubMed ID: 1971992
  • Toutain A. et al. 1997. Human genetics. 99: 256-61. PubMed ID: 9048931
  • Wang H. et al. 2013. Molecular Vision. 19: 2590-5.  PubMed ID: 24379646
Order Kits
TEST METHODS

Bi-Directional Sanger Sequencing

Test Procedure

Nomenclature for sequence variants was from the Human Genome Variation Society (http://www.hgvs.org).  As required, DNA is extracted from the patient specimen.  PCR is used to amplify the indicated exons plus additional flanking non-coding sequence.  After cleaning of the PCR products, cycle sequencing is carried out using the ABI Big Dye Terminator v.3.0 kit.  Products are resolved by electrophoresis on an ABI 3730xl capillary sequencer.  In most cases, sequencing is performed in both forward and reverse directions; in some cases, sequencing is performed twice in either the forward or reverse directions.  In nearly all cases, the full coding region of each exon as well as 20 bases of non-coding DNA flanking the exon are sequenced.

Analytical Validity

As of March 2016, we compared 17.37 Mb of Sanger DNA sequence generated at PreventionGenetics to NextGen sequence generated in other labs. We detected only 4 errors in our Sanger sequences, and these were all due to allele dropout during PCR. For Proficiency Testing, both external and internal, in the 12 years of our lab operation we have Sanger sequenced roughly 8,800 PCR amplicons. Only one error has been identified, and this was due to sequence analysis error.

Our Sanger sequencing is capable of detecting virtually all nucleotide substitutions within the PCR amplicons. Similarly, we detect essentially all heterozygous or homozygous deletions within the amplicons. Homozygous deletions which overlap one or more PCR primer annealing sites are detectable as PCR failure. Heterozygous deletions which overlap one or more PCR primer annealing sites are usually not detected (see Analytical Limitations). All heterozygous insertions within the amplicons up to about 100 nucleotides in length appear to be detectable. Larger heterozygous insertions may not be detected. All homozygous insertions within the amplicons up to about 300 nucleotides in length appear to be detectable. Larger homozygous insertions may masquerade as homozygous deletions (PCR failure).

Analytical Limitations

In exons where our sequencing did not reveal any variation between the two alleles, we cannot be certain that we were able to PCR amplify both of the patient’s alleles. Occasionally, a patient may carry an allele which does not amplify, due for example to a deletion or a large insertion. In these cases, the report contains no information about the second allele.

Similarly, our sequencing tests have almost no power to detect duplications, triplications, etc. of the gene sequences.

In most cases, only the indicated exons and roughly 20 bp of flanking non-coding sequence on each side are analyzed. Test reports contain little or no information about other portions of the gene, including many regulatory regions.

In nearly all cases, we are unable to determine the phase of sequence variants. In particular, when we find two likely causative mutations for recessive disorders, we cannot be certain that the mutations are on different alleles.

Our ability to detect minor sequence variants, due for example to somatic mosaicism is limited. Sequence variants that are present in less than 50% of the patient’s nucleated cells may not be detected.

Runs of mononucleotide repeats (eg (A)n or (T)n) with n >8 in the reference sequence are generally not analyzed because of strand slippage during PCR and cycle sequencing.

Unless otherwise indicated, the sequence data that we report are based on DNA isolated from a specific tissue (usually leukocytes). Test reports contain no information about gene sequences in other tissues.

Order Kits

Ordering Options


myPrevent - Online Ordering
  • The test can be added to your online orders in the Summary and Pricing section.
  • Once the test has been added log in to myPrevent to fill out an online requisition form.
REQUISITION FORM
  • A completed requisition form must accompany all specimens.
  • Billing information along with specimen and shipping instructions are within the requisition form.
  • All testing must be ordered by a qualified healthcare provider.

SPECIMEN TYPES
WHOLE BLOOD

(Delivery accepted Monday - Saturday)

  • Collect 3 ml -5 ml (5 ml preferred) of whole blood in EDTA (purple top tube) or ACD (yellow top tube). For Test #500-DNA Banking only, collect 10 ml -20 ml of whole blood.
  • For small babies, we require a minimum of 1 ml of blood.
  • Only one blood tube is required for multiple tests.
  • Ship blood tubes at room temperature in an insulated container. Do not freeze blood.
  • During hot weather, include a frozen ice pack in the shipping container. Place a paper towel or other thin material between the ice pack and the blood tube.
  • In cold weather, include an unfrozen ice pack in the shipping container as insulation.
  • At room temperature, blood specimen is stable for up to 48 hours.
  • If refrigerated, blood specimen is stable for up to one week.
  • Label the tube with the patient name, date of birth and/or ID number.

DNA

(Delivery accepted Monday - Saturday)

  • Send in screw cap tube at least 5 µg -10 µg of purified DNA at a concentration of at least 20 µg/ml for NGS and Sanger tests and at least 5 µg of purified DNA at a concentration of at least 100 µg/ml for gene-centric aCGH, MLPA, and CMA tests, minimum 2 µg for limited specimens.
  • For requests requiring more than one test, send an additional 5 µg DNA per test ordered when possible.
  • DNA may be shipped at room temperature.
  • Label the tube with the composition of the solute, DNA concentration as well as the patient’s name, date of birth, and/or ID number.
  • We only accept genomic DNA for testing. We do NOT accept products of whole genome amplification reactions or other amplification reactions.

CELL CULTURE

(Delivery preferred Monday - Thursday)

  • PreventionGenetics should be notified in advance of arrival of a cell culture.
  • Culture and send at least two T25 flasks of confluent cells.
  • Some panels may require additional flasks (dependent on size of genes, amount of Sanger sequencing required, etc.). Multiple test requests may also require additional flasks. Please contact us for details.
  • Send specimens in insulated, shatterproof container overnight.
  • Cell cultures may be shipped at room temperature or refrigerated.
  • Label the flasks with the patient name, date of birth, and/or ID number.
  • We strongly recommend maintaining a local back-up culture. We do not culture cells.
loading Loading... ×