Forms

Amyotrophic Lateral Sclerosis / Motor Neuron Disease via the FUS Gene

  • Summary and Pricing
  • Clinical Features and Genetics
  • Citations
  • Methods
  • Ordering/Specimens
Order Kits
TEST METHODS

NGS Sequencing

Test Code Test Copy GenesIndividual Gene PriceCPT Code Copy CPT Codes
6927 FUS$690.00 81406 Add to Order
Pricing Comment

Our most cost-effective testing approach is NextGen sequencing with Sanger sequencing supplemented as needed to ensure sufficient coverage and to confirm NextGen calls that are pathogenic, likely pathogenic or of uncertain significance. If, however, full gene Sanger sequencing only is desired (for purposes of insurance billing or STAT turnaround time for example), please see link below for Test Code, pricing, and turnaround time information.

For Sanger Sequencing click here.
Targeted Testing

For ordering targeted known variants, please proceed to our Targeted Variants landing page.

Turnaround Time

The great majority of tests are completed within 28 days.

Clinical Sensitivity

This test allows the detection of mutations in up to 4% of AD-ALS cases and 2% of SALS (Hewitt, C. et al. Arch Neurol 67(4):455-461, 2010).

See More

See Less

Deletion/Duplication Testing via aCGH

Test Code Test Copy GenesIndividual Gene PriceCPT Code Copy CPT Codes
600 FUS$690.00 81479 Add to Order
Pricing Comment

# of Genes Ordered

Total Price

1

$690

2

$730

3

$770

4-10

$840

11-30

$1,290

31-100

$1,670

Over 100

Call for quote

Turnaround Time

The great majority of tests are completed within 28 days.

Clinical Sensitivity

Thus far, no pathogenic gross deletions or duplications have been reported in the FUS gene (Human Gene Mutation Database).

See More

See Less

Clinical Features

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by a selective loss of motor neurons in the motor cortex, brain steam, and spinal cord (Tandan, R. and Bradley, W.G. Ann Neurol 18(3):271-280, 1985). The dysfunction and loss of these neurons results in rapid progressive muscle weakness, atrophy and ultimately paralysis of limb, bulbar and respiratory muscles. The mean age of onset of symptoms is about 55 years of age; most cases begin between 40 and 70 years of age. The annual incidence of ALS is 1-2 per 100,000 (Cleveland, D.W. and Rothstein, J.D. Nat Rev Neurosci 2(11):806-819, 2001). The most common symptoms include twitching and cramping of muscles of the hands and feet, loss of motor control in the hands and arms, weakness and fatigue, tripping and falling. Symptoms usually begin with asymmetric involvement of the muscles. As the disease progresses, symptoms may include difficulty in talking, breathing and swallowing, shortness of breath, and paralysis. Cognitive impairment has not been initially associated with ALS. However, frontotemporal dementia (FTD) has been reported in several cases. Dementia has been documented in patients with ALS from different ethnic groups and affects both males and females (Wikström, J. et al. Arch Neurol 39(11):681-683, 1982; Lipton, A.M. et al. Acta Neuropathol 108(5):379-385, 2004; Mitsuyama, Y. and Inoue, T. Neuropathology 29(6):649-654, 2009).

Genetics

About 10% of ALS cases are familial (Emery, A.E. and Holloway, S. Adv Neurol 36:139-147, 1982). In most of these families, ALS is inherited in an autosomal dominant manner (AD-ALS) and is age-dependent with high penetrance. In rare families, the disease is transmitted in an autosomal recessive or dominant X-linked pattern. About 90% of patients with ALS are sporadic cases (SALS) with no known affected relatives. It is unclear how many of the apparently sporadic cases are inherited with low penetrance. The clinical presentations of familial ALS (FALS) and sporadic ALS (SALS) are similar. However, the onset of symptoms in FALS is usually earlier compared to that of SALS (Kinsley and Siddique. GeneReviews, 2012). Autosomal Dominant ALS (AD-ALS) is a clinically and genetically heterogeneous disorder that affects all ethnic groups. At least twelve genetic loci have been reported. Several genes have been identified and include C9orf72, SOD1, FUS, TARDBP, ANG and OPTN. Pathogenic variants in the FUS gene have been reported in patients with ALS (Kwiatkowski, T.J., Jr. et al. Science 323(5918):1205-1208, 2009; Vance, C. et al. Science 323(5918):1208-1211, 2009), and account for up to 4% of AD-ALS cases and 2% of SALS (Hewitt, C. et al. Arch Neurol 67(4):455-61, 2010). About 70 different FUS pathogenic variants have been reported to date. Although most variants are missense resulting in amino acid substitutions, splicing and nonsense variants, as well as small deletions and insertions have been reported. The latter include both frame-shift and in-frame mutations. To date, no pathogenic regulatory variants or large deletions in the FUS gene were reported to be the cause of ALS. All FUS causative variants were heterozygous, except for the H517Q variant, which was found in the homozygous state in four patients from a consanguineous family of Cape Verdean origin (Kwiatkowski, T.J., Jr. et al, 2009). The FUS gene encodes the FUS (fused in sarcoma) protein, which has been involved in several cellular processes including transcription regulation and alternative splicing.

Testing Strategy

For this Next Generation Sequencing (NGS) test, sequencing is accomplished by capturing specific regions with an optimized solution-based hybridization kit, followed by massively parallel sequencing of the captured DNA fragments. Additional Sanger sequencing is performed for regions not captured or with insufficient number of sequence reads. All reported pathogenic, likely pathogenic, and variants of uncertain significance are confirmed by Sanger sequencing.

For Sanger sequencing, polymerase chain reaction (PCR) is used to amplify targeted regions. After purification of the PCR products, cycle sequencing is carried out using the ABI Big Dye Terminator v.3.0 kit. PCR products are resolved by electrophoresis on an ABI 3730xl capillary sequencer. In nearly all cases, cycle sequencing is performed separately in both the forward and reverse directions.

This test provides full coverage of all coding exons of the FUS gene, plus ~10 bases of flanking noncoding DNA. We define full coverage as >20X NGS reads or Sanger sequencing.

Indications for Test

Patients with symptoms suggestive of ALS or Motor Neuron Disease with or without FTD, and no C9orf72-GGGGCC repeat expansion or mutations in the SOD1 gene. Patients with AR-ALS of Cape Verdean origin are also candidates.

Gene

Official Gene Symbol OMIM ID
FUS 137070
Inheritance Abbreviation
Autosomal Dominant AD
Autosomal Recessive AR
X-Linked XL
Mitochondrial MT

Disease

Name Inheritance OMIM ID
Amyotrophic Lateral Sclerosis Type 6 608030

Related Tests

Name
Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Sequencing Panel
Autism Spectrum Disorders and Intellectual Disability (ASD-ID) Comprehensive Sequencing Panel with CNV Detection
Classic Amyotrophic Lateral Sclerosis Sequencing Panel
Dementia Sequencing Panel

CONTACTS

Genetic Counselors
Geneticist
Citations
  • Cleveland, D.W. and Rothstein, J.D. (2001). "From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS." Nat Rev Neurosci 2(11): 806-819. PubMed ID: 11715057
  • Emery A.E., Holloway S. 1982. Advances in Neurology. 36: 139-47. PubMed ID: 7180680
  • Hewitt, C. et al (2010). "Novel FUS/TLS mutations and pathology in familial and sporadic amyotrophic lateral sclerosis."  Arch Neurol 67(4):455-61. PubMed ID: 20385912
  • Human Gene Mutation Database (Bio-base).
  • Kinsley L, Siddique T. 2015 Amyotrophic Lateral Sclerosis Overview. In: Pagon RA, Adam MP, Bird TD, Dolan CR, Fong C-T, and Stephens K, editors. GeneReviews™, Seattle (WA): University of Washington, Seattle. PubMed ID: 20301623
  • Kwiatkowski, T. J., Jr., et.al. (2009). "Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis." Science 323(5918): 1205-1208. PubMed ID: 19251627
  • Lipton, A.M. et al. (2004). "Frontotemporal lobar degeneration with motor neuron disease-type inclusions predominates in 76 cases of frontotemporal degeneration". Acta Neuropathol 108(5):379-385. PubMed ID: 15351890
  • Mitsuyama, Y. and Inoue, T. (2009). "Clinical entity of frontotemporal dementia with motor neuron disease". Neuropathology 29(6):649-654. PubMed ID: 19780984
  • Tandan, R. and Bradley, WG. (1985). "Amyotrophic lateral sclerosis: Part 1. Clinical features, pathology, and ethical issues in management." Ann Neurol 18(3): 271-280. PubMed ID: 4051456
  • Vance, C., et.al. (2009). "Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6." Science 323(5918): 1208-1211. PubMed ID: 19251628
  • Wikström, J. et al. (1982). "Classic amyotrophic lateral sclerosis with dementia". Arch Neurol 39(11):681-683. PubMed ID: 7125994
Order Kits
TEST METHODS

NextGen Sequencing using PG-Select Capture Probes

Test Procedure

We use a combination of Next Generation Sequencing (NGS) and Sanger sequencing technologies to cover the full coding regions of the listed genes plus ~20 bases of non-coding DNA flanking each exon.  As required, genomic DNA is extracted from the patient specimen.  For NGS, patient DNA corresponding to these regions is captured using an optimized set of DNA hybridization probes.  Captured DNA is sequenced using Illumina’s Reversible Dye Terminator (RDT) platform (Illumina, San Diego, CA, USA).  Regions with insufficient coverage by NGS are covered by Sanger sequencing.  All pathogenic, likely pathogenic, or variants of uncertain significance are confirmed by Sanger sequencing.

For Sanger sequencing, Polymerase Chain Reaction (PCR) is used to amplify targeted regions.  After purification of the PCR products, cycle sequencing is carried out using the ABI Big Dye Terminator v.3.0 kit.  PCR products are resolved by electrophoresis on an ABI 3730xl capillary sequencer.  In nearly all cases, cycle sequencing is performed separately in both the forward and reverse directions.

Patient DNA sequence is aligned to the genomic reference sequence for the indicated gene region(s). All differences from the reference sequences (sequence variants) are assigned to one of five interpretation categories, listed below, per ACMG Guidelines (Richards et al. 2015).

(1) Pathogenic Variants
(2) Likely Pathogenic Variants
(3) Variants of Uncertain Significance
(4) Likely Benign Variants
(5) Benign, Common Variants

Human Genome Variation Society (HGVS) recommendations are used to describe sequence variants (http://www.hgvs.org).  Rare variants and undocumented variants are nearly always classified as likely benign if there is no indication that they alter protein sequence or disrupt splicing.

Analytical Validity

As of March 2016, 6.36 Mb of sequence (83 genes, 1557 exons) generated in our lab was compared between Sanger and NextGen methodologies. We detected no differences between the two methods. The comparison involved 6400 total sequence variants (differences from the reference sequences). Of these, 6144 were nucleotide substitutions and 256 were insertions or deletions. About 65% of the variants were heterozygous and 35% homozygous. The insertions and deletions ranged in length from 1 to over 100 nucleotides.

In silico validation of insertions and deletions in 20 replicates of 5 genes was also performed. The validation included insertions and deletions of lengths between 1 and 100 nucleotides. Insertions tested in silico: 2200 between 1 and 5 nucleotides, 625 between 6 and 10 nucleotides, 29 between 11 and 20 nucleotides, 25 between 21 and 49 nucleotides, and 23 at or greater than 50 nucleotides, with the largest at 98 nucleotides. All insertions were detected. Deletions tested in silico: 1813 between 1 and 5 nucleotides, 97 between 6 and 10 nucleotides, 32 between 11 and 20 nucleotides, 20 between 21 and 49 nucleotides, and 39 at or greater than 50 nucleotides, with the largest at 96 nucleotides. All deletions less than 50 nucleotides in length were detected, 13 greater than 50 nucleotides in length were missed. Our standard NextGen sequence variant calling algorithms are generally not capable of detecting insertions (duplications) or heterozygous deletions greater than 100 nucleotides. Large homozygous deletions appear to be detectable.   

Analytical Limitations

Interpretation of the test results is limited by the information that is currently available.  Better interpretation should be possible in the future as more data and knowledge about human genetics and this specific disorder are accumulated.

When Sanger sequencing does not reveal any difference from the reference sequence, or when a sequence variant is homozygous, we cannot be certain that we were able to detect both patient alleles.  Occasionally, a patient may carry an allele which does not amplify, due to a large deletion or insertion.   In these cases, the report will contain no information about the second allele.  Our Sanger and NGS Sequencing tests are generally not capable of detecting Copy Number Variants (CNVs).

We sequence all coding exons for each given transcript, plus ~20 bp of flanking non-coding DNA for each exon.  Test reports contain no information about other portions of the gene, such as regulatory domains, deep intronic regions or any currently uncharacterized alternative exons.

In most cases, we are unable to determine the phase of sequence variants.  In particular, when we find two likely causative mutations for recessive disorders, we cannot be certain that the mutations are on different alleles.

Our ability to detect minor sequence variants due to somatic mosaicism is limited.  Sequence variants that are present in less than 50% of the patient’s nucleated cells may not be detected.

Runs of mononucleotide repeats (eg (A)n or (T)n) with n >8 in the reference sequence are generally not analyzed because of strand slippage during PCR.

Unless otherwise indicated, DNA sequence data is obtained from a specific cell-type (usually leukocytes from whole blood).   Test reports contain no information about the DNA sequence in other cell-types.

We cannot be certain that the reference sequences are correct.

Rare, low probability interpretations of sequencing results, such as for example the occurrence of de novo mutations in recessive disorders, are generally not included in the reports.

We have confidence in our ability to track a specimen once it has been received by PreventionGenetics.  However, we take no responsibility for any specimen labeling errors that occur before the sample arrives at PreventionGenetics.

Deletion/Duplication Testing Via Array Comparative Genomic Hybridization

Test Procedure

Equal amounts of genomic DNA from the patient and a gender matched reference sample are amplified and labeled with Cy3 and Cy5 dyes, respectively. To prevent any sample cross contamination, a unique sample tracking control is added into each patient sample. Each labeled patient product is then purified, quantified, and combined with the same amount of reference product. The combined sample is loaded onto the designed array and hybridized for at least 22-42 hours at 65°C. Arrays are then washed and scanned immediately with 2.5 µM resolution. Only data for the gene(s) of interest for each patient are extracted and analyzed.

Analytical Validity

PreventionGenetics' high density gene-centric custom designed aCGH enables the detection of relatively small deletions and duplications within a single exon of a given gene or deletions and duplications encompassing the entire gene. PreventionGenetics has established and verified this test's accuracy and precision.

Analytical Limitations

Our dense probe coverage may allow detection of deletions/duplications down to 100 bp; however due to limitations and probe spacing this cannot be guaranteed across all exons of all genes. Therefore, some copy number changes smaller than 100-300 bp within a targeted large exon may not be detected by our array.

This array may not detect deletions and duplications present at low levels of mosaicism or those present in genes that have pseudogene copies or repeats elsewhere in the genome.

aCGH will not detect balanced translocations, inversions, or point mutations that may be responsible for the clinical phenotype.

Breakpoints, if occurring outside the targeted gene, may be hard to define.

The sensitivity of this assay may be reduced when DNA is extracted by an outside laboratory.

Order Kits

Ordering Options


myPrevent - Online Ordering
  • The test can be added to your online orders in the Summary and Pricing section.
  • Once the test has been added log in to myPrevent to fill out an online requisition form.
REQUISITION FORM
  • A completed requisition form must accompany all specimens.
  • Billing information along with specimen and shipping instructions are within the requisition form.
  • All testing must be ordered by a qualified healthcare provider.

SPECIMEN TYPES
WHOLE BLOOD

(Delivery accepted Monday - Saturday)

  • Collect 3 ml -5 ml (5 ml preferred) of whole blood in EDTA (purple top tube) or ACD (yellow top tube). For Test #500-DNA Banking only, collect 10 ml -20 ml of whole blood.
  • For small babies, we require a minimum of 1 ml of blood.
  • Only one blood tube is required for multiple tests.
  • Ship blood tubes at room temperature in an insulated container. Do not freeze blood.
  • During hot weather, include a frozen ice pack in the shipping container. Place a paper towel or other thin material between the ice pack and the blood tube.
  • In cold weather, include an unfrozen ice pack in the shipping container as insulation.
  • At room temperature, blood specimen is stable for up to 48 hours.
  • If refrigerated, blood specimen is stable for up to one week.
  • Label the tube with the patient name, date of birth and/or ID number.

DNA

(Delivery accepted Monday - Saturday)

  • Send in screw cap tube at least 5 µg -10 µg of purified DNA at a concentration of at least 20 µg/ml for NGS and Sanger tests and at least 5 µg of purified DNA at a concentration of at least 100 µg/ml for gene-centric aCGH, MLPA, and CMA tests, minimum 2 µg for limited specimens.
  • For requests requiring more than one test, send an additional 5 µg DNA per test ordered when possible.
  • DNA may be shipped at room temperature.
  • Label the tube with the composition of the solute, DNA concentration as well as the patient’s name, date of birth, and/or ID number.
  • We only accept genomic DNA for testing. We do NOT accept products of whole genome amplification reactions or other amplification reactions.

CELL CULTURE

(Delivery preferred Monday - Thursday)

  • PreventionGenetics should be notified in advance of arrival of a cell culture.
  • Culture and send at least two T25 flasks of confluent cells.
  • Some panels may require additional flasks (dependent on size of genes, amount of Sanger sequencing required, etc.). Multiple test requests may also require additional flasks. Please contact us for details.
  • Send specimens in insulated, shatterproof container overnight.
  • Cell cultures may be shipped at room temperature or refrigerated.
  • Label the flasks with the patient name, date of birth, and/or ID number.
  • We strongly recommend maintaining a local back-up culture. We do not culture cells.
loading Loading... ×