Familial Hypocalciuric Hypercalcemia (FHH) Sequencing Panel

  • Summary and Pricing
  • Clinical Features and Genetics
  • Citations
  • Methods
  • Ordering/Specimens
Order Kits

NGS Sequencing

Test Code Test Copy GenesCPT Code Copy CPT Codes
4337 AP2S1 81479 Add to Order
CASR 81405
GNA11 81479
Full Panel Price* $1390.00
Pricing Comment

We are happy to accommodate requests for single genes or a subset of these genes. The price will remain the list price. If desired, free reflex testing to remaining genes on panel is available. Alternatively, a single gene or subset of genes can also be ordered on our PGxome Custom Panel.

Targeted Testing

For ordering targeted known variants, please proceed to our Targeted Variants landing page.

Turnaround Time

The great majority of tests are completed within 28 days.

Clinical Sensitivity

CASR pathogenic variants are detected in around 65% of FHH patients (Hannan et al. 2013).

Heterozygous AP2S1 missense variants were found in 13% to 20% of unrelated FHH patients who were negative for CASR pathogenic variants (Nesbit et al. 2013; Hendy et al. 2014).

Detection rate of pathogenic variants in the GNA11 gene in a large cohort of patients with FHH2 is unknown in the literature because documented GNA11 pathogenic variants have been reported only in limited cases (Mannstadt et al. 2013; Nesbit et al. 2013).

See More

See Less

Deletion/Duplication Testing via aCGH

Test Code Test Copy GenesIndividual Gene PriceCPT Code Copy CPT Codes
600 AP2S1$690.00 81479 Add to Order
CASR$690.00 81479
GNA11$690.00 81479
Full Panel Price* $770.00
Pricing Comment

# of Genes Ordered

Total Price













Over 100

Call for quote

Turnaround Time

The great majority of tests are completed within 28 days.

Clinical Sensitivity

In reported in FHH patients, large deletions and duplications were rarely found in CASR while no deletions and duplications have been reported in GNA11 and AP2S1.

See More

See Less

Clinical Features

Familial hypocalciuric hypercalcemia (FHH) is a heritable disorder of mineral homeostasis characterized by lifelong elevation of serum calcium concentrations (Pollak et al. 1993; Nesbit et al. 2013). FHH patients are usually asymptomatic and the disorder is generally considered benign. Clinical features of FHH include hypermagnesemia and low urinary calcium excretion. FHH patients have normal or mildly elevated circulating parathyroid hormone (PTH) level. In uncommon symptomatic cases, some adult patients have chondrocalcinosis and pancreatitis while some children may develop neonatal severe hyperparathyroidism (NSHPT). The age of FHH onset is mostly in infancy, but severe FHH can present in either childhood or early adulthood. FHH is a genetically heterogeneous disorder and consists of three variants (FHH1, FHH2 and FHH3) by genetic profiling.  


Familial hypocalciuric hypercalcemia (FHH) is inherited in an autosomal dominant manner and consists of three variants (FHH1, FHH2 and FHH3) depending on the causative gene.

Familial hypocalciuric hypercalcemia type 1 (FHH1) is caused by loss-of-function CASR pathogenic variants, accounting for around 65% of FHH patients (Pollak et al. 1993). CASR has 6 coding exons that encode the calcium-sensing receptor, a G-protein-coupled receptor (GPCR), which is essential in extracellular calcium homeostasis and regulation of salt-water metabolism (Hannan et al. 2013). Genetic defects located throughout the CASR gene include missense, nonsense, splicing site variants, and small deletion/insertions, while large deletions and insertions are very rare (Human Gene Mutation Database). The majority (>50%) of pathogenic variants associated with hypercalcemic and hypocalcemic disorders are located in the extracellular domain (ECD) of CaSR (Hannan et al. 2012).

Familial hypocalciuric hypercalcemia type 2 (FHH2) is caused by inactivating GNA11 pathogenic variants (Mannstadt et al. 2013; Nesbit et al. 2013). GNA11 has 7 coding exons that encode the subunit alpha-11 of a G-protein member. Patients with defects in this protein exhibit decreased or increased sensitivity to changes in extracellular calcium concentrations. Genetic defects found so far in the GNA11 gene include missense mutations and small deletions. No large deletions have been reported (Human Gene Mutation Database).

Familial hypocalciuric hypercalcemia type 3 (FHH3) is caused by AP2S1 pathogenic variants (Nesbit et al. 2013). AP2S1 has 5 coding exons that encode the σ-2 subunit of the adaptor-related protein complex 2 (AP2), which is a central component of clathrin-coated vesicles (CCVs) pivotal in clathrin-mediated endocytosis. Genetic defects found to date in the AP2S1 gene are all missense substitutions only occurring at codon p.Arg15 (Nesbit et al. 2013; Hendy et al. 2014).

Testing Strategy

For this NGS panel, the full coding regions, plus ~10 bp of non-coding DNA flanking each exon, are sequenced for each of the genes listed below. Sequencing is accomplished by capturing specific regions with an optimized solution-based hybridization method, followed by massively parallel sequencing of the captured DNA fragments. Additional Sanger sequencing is performed for any regions not captured or with insufficient number of sequence reads. All pathogenic, undocumented and questionable variant calls are confirmed by Sanger sequencing.

Indications for Test

Candidates for this test are patients with familial hypocalciuric hypercalcemia. 


Official Gene Symbol OMIM ID
AP2S1 602242
CASR 601199
GNA11 139313
Inheritance Abbreviation
Autosomal Dominant AD
Autosomal Recessive AR
X-Linked XL
Mitochondrial MT

Related Tests

Chronic Pancreatitis Sequencing Panel
Familial Hypocalciuric Hypercalcemia (FHH) via the AP2S1 Gene
Hypercalcemic and Hypocalcemic Disorders via the CASR Gene
Hypercalcemic and Hypocalcemic Disorders via the GNA11 Gene
Hypomagnesemia Sequencing Panel with CNV Detection
Hypoparathyroidism Sequencing Panel
Nephrolithiasis and Nephrocalcinosis Sequencing Panel


Genetic Counselors
  • Hannan F. M. et al. 2012. Human Molecular Genetics. 21: 2768-2778. PubMed ID: 22422767
  • Hannan F.M., Thakker R.V. 2013. Best Practice & Research. Clinical Endocrinology & Metabolism. 27: 359-71. PubMed ID: 23856265
  • Hendy G.N. et al. 2014. The Journal of Clinical Endocrinology and Metabolism. 99: E1311-5. PubMed ID: 24731014
  • Human Gene Mutation Database (HGMD).
  • Mannstadt M. et al. 2013. The New England Journal of Medicine. 368: 2532-4. PubMed ID: 23802536
  • Nesbit M.A. et al. 2013. Nature Genetics. 45: 93-7. PubMed ID: 23222959
  • Nesbit M.A. et al. 2013. The New England Journal of Medicine. 368: 2476-86. PubMed ID: 23802516
  • Pollak M.R. et al. 1993. Cell. 75: 1297-303. PubMed ID: 7916660
Order Kits

NextGen Sequencing using PG-Select Capture Probes

Test Procedure

We use a combination of Next Generation Sequencing (NGS) and Sanger sequencing technologies to cover the full coding regions of the listed genes plus ~20 bases of non-coding DNA flanking each exon.  As required, genomic DNA is extracted from the patient specimen.  For NGS, patient DNA corresponding to these regions is captured using an optimized set of DNA hybridization probes.  Captured DNA is sequenced using Illumina’s Reversible Dye Terminator (RDT) platform (Illumina, San Diego, CA, USA).  Regions with insufficient coverage by NGS are covered by Sanger sequencing.  All pathogenic, likely pathogenic, or variants of uncertain significance are confirmed by Sanger sequencing.

For Sanger sequencing, Polymerase Chain Reaction (PCR) is used to amplify targeted regions.  After purification of the PCR products, cycle sequencing is carried out using the ABI Big Dye Terminator v.3.0 kit.  PCR products are resolved by electrophoresis on an ABI 3730xl capillary sequencer.  In nearly all cases, cycle sequencing is performed separately in both the forward and reverse directions.

Patient DNA sequence is aligned to the genomic reference sequence for the indicated gene region(s). All differences from the reference sequences (sequence variants) are assigned to one of five interpretation categories, listed below, per ACMG Guidelines (Richards et al. 2015).

(1) Pathogenic Variants
(2) Likely Pathogenic Variants
(3) Variants of Uncertain Significance
(4) Likely Benign Variants
(5) Benign, Common Variants

Human Genome Variation Society (HGVS) recommendations are used to describe sequence variants (  Rare variants and undocumented variants are nearly always classified as likely benign if there is no indication that they alter protein sequence or disrupt splicing.

Analytical Validity

As of March 2016, 6.36 Mb of sequence (83 genes, 1557 exons) generated in our lab was compared between Sanger and NextGen methodologies. We detected no differences between the two methods. The comparison involved 6400 total sequence variants (differences from the reference sequences). Of these, 6144 were nucleotide substitutions and 256 were insertions or deletions. About 65% of the variants were heterozygous and 35% homozygous. The insertions and deletions ranged in length from 1 to over 100 nucleotides.

In silico validation of insertions and deletions in 20 replicates of 5 genes was also performed. The validation included insertions and deletions of lengths between 1 and 100 nucleotides. Insertions tested in silico: 2200 between 1 and 5 nucleotides, 625 between 6 and 10 nucleotides, 29 between 11 and 20 nucleotides, 25 between 21 and 49 nucleotides, and 23 at or greater than 50 nucleotides, with the largest at 98 nucleotides. All insertions were detected. Deletions tested in silico: 1813 between 1 and 5 nucleotides, 97 between 6 and 10 nucleotides, 32 between 11 and 20 nucleotides, 20 between 21 and 49 nucleotides, and 39 at or greater than 50 nucleotides, with the largest at 96 nucleotides. All deletions less than 50 nucleotides in length were detected, 13 greater than 50 nucleotides in length were missed. Our standard NextGen sequence variant calling algorithms are generally not capable of detecting insertions (duplications) or heterozygous deletions greater than 100 nucleotides. Large homozygous deletions appear to be detectable.   

Analytical Limitations

Interpretation of the test results is limited by the information that is currently available.  Better interpretation should be possible in the future as more data and knowledge about human genetics and this specific disorder are accumulated.

When Sanger sequencing does not reveal any difference from the reference sequence, or when a sequence variant is homozygous, we cannot be certain that we were able to detect both patient alleles.  Occasionally, a patient may carry an allele which does not amplify, due to a large deletion or insertion.   In these cases, the report will contain no information about the second allele.  Our Sanger and NGS Sequencing tests are generally not capable of detecting Copy Number Variants (CNVs).

We sequence all coding exons for each given transcript, plus ~20 bp of flanking non-coding DNA for each exon.  Test reports contain no information about other portions of the gene, such as regulatory domains, deep intronic regions or any currently uncharacterized alternative exons.

In most cases, we are unable to determine the phase of sequence variants.  In particular, when we find two likely causative mutations for recessive disorders, we cannot be certain that the mutations are on different alleles.

Our ability to detect minor sequence variants due to somatic mosaicism is limited.  Sequence variants that are present in less than 50% of the patient’s nucleated cells may not be detected.

Runs of mononucleotide repeats (eg (A)n or (T)n) with n >8 in the reference sequence are generally not analyzed because of strand slippage during PCR.

Unless otherwise indicated, DNA sequence data is obtained from a specific cell-type (usually leukocytes from whole blood).   Test reports contain no information about the DNA sequence in other cell-types.

We cannot be certain that the reference sequences are correct.

Rare, low probability interpretations of sequencing results, such as for example the occurrence of de novo mutations in recessive disorders, are generally not included in the reports.

We have confidence in our ability to track a specimen once it has been received by PreventionGenetics.  However, we take no responsibility for any specimen labeling errors that occur before the sample arrives at PreventionGenetics.

Deletion/Duplication Testing via Array Comparative Genomic Hybridization

Test Procedure

Equal amounts of genomic DNA from the patient and a gender matched reference sample are amplified and labeled with Cy3 and Cy5 dyes, respectively. To prevent any sample cross contamination, a unique sample tracking control is added into each patient sample. Each labeled patient product is then purified, quantified, and combined with the same amount of reference product. The combined sample is loaded onto the designed array and hybridized for at least 22-42 hours at 65°C. Arrays are then washed and scanned immediately with 2.5 µM resolution. Only data for the gene(s) of interest for each patient are extracted and analyzed.

Analytical Validity

PreventionGenetics' high density gene-centric custom designed aCGH enables the detection of relatively small deletions and duplications within a single exon of a given gene or deletions and duplications encompassing the entire gene. PreventionGenetics has established and verified this test's accuracy and precision.

Analytical Limitations

Our dense probe coverage may allow detection of deletions/duplications down to 100 bp; however due to limitations and probe spacing this cannot be guaranteed across all exons of all genes. Therefore, some copy number changes smaller than 100-300 bp within a targeted large exon may not be detected by our array.

This array may not detect deletions and duplications present at low levels of mosaicism or those present in genes that have pseudogene copies or repeats elsewhere in the genome.

aCGH will not detect balanced translocations, inversions, or point mutations that may be responsible for the clinical phenotype.

Breakpoints, if occurring outside the targeted gene, may be hard to define.

The sensitivity of this assay may be reduced when DNA is extracted by an outside laboratory.

Order Kits

Ordering Options

myPrevent - Online Ordering
  • The test can be added to your online orders in the Summary and Pricing section.
  • Once the test has been added log in to myPrevent to fill out an online requisition form.
  • A completed requisition form must accompany all specimens.
  • Billing information along with specimen and shipping instructions are within the requisition form.
  • All testing must be ordered by a qualified healthcare provider.


(Delivery accepted Monday - Saturday)

  • Collect 3 ml -5 ml (5 ml preferred) of whole blood in EDTA (purple top tube) or ACD (yellow top tube). For Test #500-DNA Banking only, collect 10 ml -20 ml of whole blood.
  • For small babies, we require a minimum of 1 ml of blood.
  • Only one blood tube is required for multiple tests.
  • Ship blood tubes at room temperature in an insulated container. Do not freeze blood.
  • During hot weather, include a frozen ice pack in the shipping container. Place a paper towel or other thin material between the ice pack and the blood tube.
  • In cold weather, include an unfrozen ice pack in the shipping container as insulation.
  • At room temperature, blood specimen is stable for up to 48 hours.
  • If refrigerated, blood specimen is stable for up to one week.
  • Label the tube with the patient name, date of birth and/or ID number.


(Delivery accepted Monday - Saturday)

  • Send in screw cap tube at least 5 µg -10 µg of purified DNA at a concentration of at least 20 µg/ml for NGS and Sanger tests and at least 5 µg of purified DNA at a concentration of at least 100 µg/ml for gene-centric aCGH, MLPA, and CMA tests, minimum 2 µg for limited specimens.
  • For requests requiring more than one test, send an additional 5 µg DNA per test ordered when possible.
  • DNA may be shipped at room temperature.
  • Label the tube with the composition of the solute, DNA concentration as well as the patient’s name, date of birth, and/or ID number.
  • We only accept genomic DNA for testing. We do NOT accept products of whole genome amplification reactions or other amplification reactions.


(Delivery preferred Monday - Thursday)

  • PreventionGenetics should be notified in advance of arrival of a cell culture.
  • Culture and send at least two T25 flasks of confluent cells.
  • Some panels may require additional flasks (dependent on size of genes, amount of Sanger sequencing required, etc.). Multiple test requests may also require additional flasks. Please contact us for details.
  • Send specimens in insulated, shatterproof container overnight.
  • Cell cultures may be shipped at room temperature or refrigerated.
  • Label the flasks with the patient name, date of birth, and/or ID number.
  • We strongly recommend maintaining a local back-up culture. We do not culture cells.
loading Loading... ×