Deafness, Autosomal Recessive 24 (DFNB24) via the RDX Gene

  • Summary and Pricing
  • Clinical Features and Genetics
  • Citations
  • Methods
  • Ordering/Specimens
Order Kits


Test Code Test Copy GenesIndividual Gene PriceCPT Code Copy CPT Codes
1554 RDX$940.00 81479 Add to Order
Targeted Testing

For ordering targeted known variants, please proceed to our Targeted Variants landing page.

Turnaround Time

The great majority of tests are completed within 18 days.

Clinical Sensitivity

In an extensive molecular epidemiology study that involved screening of 112 hearing loss candidate genes in 216 randomly selected Japanese deafness patients, a pathogenic variant in the RDX gene was identified in one early-onset hearing loss patient (Miyagawa et al. 2013).

See More

See Less

Deletion/Duplication Testing via aCGH

Test Code Test Copy GenesIndividual Gene PriceCPT Code Copy CPT Codes
600 RDX$690.00 81479 Add to Order
Pricing Comment

# of Genes Ordered

Total Price













Over 100

Call for quote

Turnaround Time

The great majority of tests are completed within 28 days.

Clinical Features

Autosomal recessive deafness 24 (DFNB24) is a nonsyndromic form of hereditary sensorineural hearing loss that is caused by a decay in the cytoskeletal protein known as radixin (Khan et al. 2007; Shearer et al. 2009; Miyagawa et al. 2013). This protein is present in the hair bundles of the inner ear hair cells and may play a role in linking the cytoskeletal protein actin to the plasma membrane (Pataky et al. 2004). DFNB24 is characterized by the progressive degeneration of cochlear stereocilia, which results in a dysfunctional transmission of sound vibrations across the auditory canal, specifically the organ of Corti and the vestibular system (Kitajiri et al. 2004). This form of hearing loss is generally prelingual and often results in severe-to-profound hearing loss. Because radixin is also a dominant protein in the liver, individuals with DFNB4 may also show signs of mild liver injury such as hyperbilirubinemia.


Autosomal recessive DFNB24 is caused by mutations in the radixin (RDX) gene, which has been localized on chromosomal region 11q22.3 and consists of 14 exons (Wilgenbus et al. 1993). The sequence of the protein product radixin is highly similar to that of ezrin and moesin, which are paralogous proteins that constitute the ezrin, radixin, and moesin (ERM) family that functions as a cross-linker between integral membrane proteins and cytoskeletal actin filaments. The radixin protein is 583 amino acids in length and has a molecular weight of 68 kDa. About 5 causative variants have been reported to date in the RDX gene, which include missense variants, splicing variants, and small insertions (Khan et al. 2007; Shearer et al. 2009; Miyagawa et al. 2013). 

Reports describe causative RDX variants in large, consanguineous Pakistani and Iranian families with autosomal recessive nonsyndromic hearing loss (ARNSHL), with affected family members observed at the fourth to seventh generations (Khan et al. 2007; Shearer et al. 2009; Lee et al. 2011).

Testing Strategy

Full gene sequencing of all 13 coding exons of RDX is performed. The full coding region of each exon plus ~10 bp of flanking non-coding DNA on either side are sequenced.  We will also sequence any single exon (Test #100) or pair of exons (Test #200) in family members of patients with known mutations or to confirm research results.

Indications for Test

The ideal RDX test candidates are individuals who present with prelingual, bilateral, severe-to-profound hearing loss, and hyperbilirubinemia.


Official Gene Symbol OMIM ID
RDX 179410
Inheritance Abbreviation
Autosomal Dominant AD
Autosomal Recessive AR
X-Linked XL
Mitochondrial MT


Name Inheritance OMIM ID
Deafness, Autosomal Recessive 24 611022

Related Test

Nonsyndromic Hearing Loss and Deafness Sequencing Panel


Genetic Counselors
  • Khan SY, Ahmed ZM, Shabbir MI, Kitajiri S, Kalsoom S, Tasneem S, Shayiq S, Ramesh A, Srisailpathy S, Khan SN, Smith RJH, Riazuddin S, Friedman TB, Riazuddin S. 2007. Mutations of the RDX gene cause nonsyndromic hearing loss at the DFNB24 locus. Human Mutation 28: 417-423. PubMed ID: 17226784
  • Kitajiri S, Fukumoto K, Hata M, Sasaki H, Katsuno T, Nakagawa T, Ito J, Tsukita S, Tsukita S. 2004. Radixin deficiency causes deafness associated with progressive degeneration of cochlear stereocilia. Journal of Cell Biology 166: 559-570. PubMed ID: 15314067
  • Lee K, Amin Ud Din M, Ansar M, Santos-Cortez RL, Ahmad W, Leal SM. 2011. Autosomal recessive nonsyndromic hearing Impairment due to a novel deletion in the RDX gene. Genetics Research International 2011: 294675. PubMed ID: 22567349
  • Miyagawa M, Naito T, Nishio SY, Kamatani N, Usami S. 2013. Targeted exon sequencing successfully discovers rare causative genes and clarifies the molecular epidemiology of Japanese deafness patients. PLoS One 8: e71381. PubMed ID: 23967202
  • Pataky F, Pironkova R, Hudspeth AJ. 2004. Radixin is a constituent of stereocilia in hair cells. Proceedings of the National Academy of Sciences USA 101: 2601-2606. PubMed ID: 14983055
  • Shearer AE, Hildebrand MS, Bromhead CJ, Kahrizi K, Webster JA, Azadeh B, Kimberling WJ, Anousheh A, Nazeri A, Stephan D, Najmabadi H, Smith RJH, Bahlo M. 2009. A novel splice site mutation in the RDX gene causes DFNB24 hearing loss in an Iranian family. American Journal of Medical Genetics 149A: 555-558. PubMed ID: 19215054
  • Wilgenbus KK, Milatovich A, Francke U, Furthmayr H. 1993. Molecular cloning, cDNA sequence, and chromosomal assignment of the human radixin gene and two dispersed pseudogenes. Genomics 16: 199–206. PubMed ID: 8486357
Order Kits

Bi-Directional Sanger Sequencing

Test Procedure

Nomenclature for sequence variants was from the Human Genome Variation Society (  As required, DNA is extracted from the patient specimen.  PCR is used to amplify the indicated exons plus additional flanking non-coding sequence.  After cleaning of the PCR products, cycle sequencing is carried out using the ABI Big Dye Terminator v.3.0 kit.  Products are resolved by electrophoresis on an ABI 3730xl capillary sequencer.  In most cases, sequencing is performed in both forward and reverse directions; in some cases, sequencing is performed twice in either the forward or reverse directions.  In nearly all cases, the full coding region of each exon as well as 10 bases of non-coding DNA flanking the exon are sequenced.

Analytical Validity

As of February 2018, we compared 26.8 Mb of Sanger DNA sequence generated at PreventionGenetics to NextGen sequence generated in other labs. We detected only 4 errors in our Sanger sequences, and these were all due to allele dropout during PCR. For Proficiency Testing, both external and internal, in the 14 years of our lab operation we have Sanger sequenced roughly 14,300 PCR amplicons. Only one error has been identified, and this was an error in analysis of sequence data.

Our Sanger sequencing is capable of detecting virtually all nucleotide substitutions within the PCR amplicons. Similarly, we detect essentially all heterozygous or homozygous deletions within the amplicons. Homozygous deletions which overlap one or more PCR primer annealing sites are detectable as PCR failure. Heterozygous deletions which overlap one or more PCR primer annealing sites are usually not detected (see Analytical Limitations). All heterozygous insertions within the amplicons up to about 100 nucleotides in length appear to be detectable. Larger heterozygous insertions may not be detected. All homozygous insertions within the amplicons up to about 300 nucleotides in length appear to be detectable. Larger homozygous insertions may masquerade as homozygous deletions (PCR failure).

Analytical Limitations

In exons where our sequencing did not reveal any variation between the two alleles, we cannot be certain that we were able to PCR amplify both of the patient’s alleles. Occasionally, a patient may carry an allele which does not amplify, due for example to a deletion or a large insertion. In these cases, the report contains no information about the second allele.

Similarly, our sequencing tests have almost no power to detect duplications, triplications, etc. of the gene sequences.

In most cases, only the indicated exons and roughly 10 bp of flanking non-coding sequence on each side are analyzed. Test reports contain little or no information about other portions of the gene, including many regulatory regions.

In nearly all cases, we are unable to determine the phase of sequence variants. In particular, when we find two likely causative mutations for recessive disorders, we cannot be certain that the mutations are on different alleles.

Our ability to detect minor sequence variants, due for example to somatic mosaicism is limited. Sequence variants that are present in less than 50% of the patient’s nucleated cells may not be detected.

Runs of mononucleotide repeats (eg (A)n or (T)n) with n >8 in the reference sequence are generally not analyzed because of strand slippage during PCR and cycle sequencing.

Unless otherwise indicated, the sequence data that we report are based on DNA isolated from a specific tissue (usually leukocytes). Test reports contain no information about gene sequences in other tissues.

Deletion/Duplication Testing via Array Comparative Genomic Hybridization

Test Procedure

Equal amounts of genomic DNA from the patient and a gender matched reference sample are amplified and labeled with Cy3 and Cy5 dyes, respectively. To prevent any sample cross contamination, a unique sample tracking control is added into each patient sample. Each labeled patient product is then purified, quantified, and combined with the same amount of reference product. The combined sample is loaded onto the designed array and hybridized for at least 22-42 hours at 65°C. Arrays are then washed and scanned immediately with 2.5 µM resolution. Only data for the gene(s) of interest for each patient are extracted and analyzed.

Analytical Validity

PreventionGenetics' high density gene-centric custom designed aCGH enables the detection of relatively small deletions and duplications within a single exon of a given gene or deletions and duplications encompassing the entire gene. PreventionGenetics has established and verified this test's accuracy and precision.

Analytical Limitations

Our dense probe coverage may allow detection of deletions/duplications down to 100 bp; however due to limitations and probe spacing this cannot be guaranteed across all exons of all genes. Therefore, some copy number changes smaller than 100-300 bp within a targeted large exon may not be detected by our array.

This array may not detect deletions and duplications present at low levels of mosaicism or those present in genes that have pseudogene copies or repeats elsewhere in the genome.

aCGH will not detect balanced translocations, inversions, or point mutations that may be responsible for the clinical phenotype.

Breakpoints, if occurring outside the targeted gene, may be hard to define.

The sensitivity of this assay may be reduced when DNA is extracted by an outside laboratory.

Order Kits

Ordering Options

myPrevent - Online Ordering
  • The test can be added to your online orders in the Summary and Pricing section.
  • Once the test has been added log in to myPrevent to fill out an online requisition form.
  • A completed requisition form must accompany all specimens.
  • Billing information along with specimen and shipping instructions are within the requisition form.
  • All testing must be ordered by a qualified healthcare provider.


(Delivery accepted Monday - Saturday)

  • Collect 3 ml -5 ml (5 ml preferred) of whole blood in EDTA (purple top tube) or ACD (yellow top tube). For Test #500-DNA Banking only, collect 10 ml -20 ml of whole blood.
  • For small babies, we require a minimum of 1 ml of blood.
  • Only one blood tube is required for multiple tests.
  • Ship blood tubes at room temperature in an insulated container. Do not freeze blood.
  • During hot weather, include a frozen ice pack in the shipping container. Place a paper towel or other thin material between the ice pack and the blood tube.
  • In cold weather, include an unfrozen ice pack in the shipping container as insulation.
  • At room temperature, blood specimen is stable for up to 48 hours.
  • If refrigerated, blood specimen is stable for up to one week.
  • Label the tube with the patient name, date of birth and/or ID number.


(Delivery accepted Monday - Saturday)

  • Send in screw cap tube at least 5 µg -10 µg of purified DNA at a concentration of at least 20 µg/ml for NGS and Sanger tests and at least 5 µg of purified DNA at a concentration of at least 100 µg/ml for gene-centric aCGH, MLPA, and CMA tests, minimum 2 µg for limited specimens.
  • For requests requiring more than one test, send an additional 5 µg DNA per test ordered when possible.
  • DNA may be shipped at room temperature.
  • Label the tube with the composition of the solute, DNA concentration as well as the patient’s name, date of birth, and/or ID number.
  • We only accept genomic DNA for testing. We do NOT accept products of whole genome amplification reactions or other amplification reactions.


(Delivery preferred Monday - Thursday)

  • PreventionGenetics should be notified in advance of arrival of a cell culture.
  • Culture and send at least two T25 flasks of confluent cells.
  • Some panels may require additional flasks (dependent on size of genes, amount of Sanger sequencing required, etc.). Multiple test requests may also require additional flasks. Please contact us for details.
  • Send specimens in insulated, shatterproof container overnight.
  • Cell cultures may be shipped at room temperature or refrigerated.
  • Label the flasks with the patient name, date of birth, and/or ID number.
  • We strongly recommend maintaining a local back-up culture. We do not culture cells.
loading Loading... ×