Forms

Colorectal Cancer Predisposition via the POLD1 Gene

  • Summary and Pricing
  • Clinical Features and Genetics
  • Citations
  • Methods
  • Ordering/Specimens
Order Kits
TEST METHODS

Sequencing

Test Code Test Copy GenesIndividual Gene PriceCPT Code Copy CPT Codes
1706 POLD1$1340.00 81479 Add to Order
Targeted Testing

For ordering targeted known variants, please proceed to our Targeted Variants landing page.

Turnaround Time

The great majority of tests are completed within 18 days.

Clinical Sensitivity

Pathogenic variants in the POLD1 gene have been observed in 0.2% of individuals with colorectal cancer (Chubb et al. 2015).

See More

See Less

Deletion/Duplication Testing via aCGH

Test Code Test Copy GenesIndividual Gene PriceCPT Code Copy CPT Codes
600 POLD1$690.00 81479 Add to Order
Pricing Comment

# of Genes Ordered

Total Price

1

$690

2

$730

3

$770

4-10

$840

11-30

$1,290

31-100

$1,670

Over 100

Call for quote

Turnaround Time

The great majority of tests are completed within 28 days.

Clinical Features

Colorectal cancer (CRC) is the development of tumors in the colon and rectum that occur in approximately 8% of individuals with cancer (Siegel et al. 2015). Similar to other cancers, CRC is caused by genetic and environmental factors (e.g. smoking, diet). Approximately 30% of CRCs are considered familial and 5% of CRCs are caused by a Mendelian disorder (Esteban-Jurado 2014). Colorectal cancer is generally broken down into the presence or absence of polyposis (numerous internal polyps). CRC inherited diseases include Lynch syndrome, Familial Adenomatous polyposis, Peutz-Jeghers, Juvenile Polyposis and Cowden syndrome. A recent syndrome has been coined CRC-polymerase proofreading-associated polyposis (PPAP). It is caused by pathogenic variants in proofreading DNA repair genes (Palles et al. 2012). Mutations in these genes predispose individuals to adenomatous polyposis or early-onset cancer (Spier et al. 2015). Identification of pathogenic variants in the germline of CRC patients is important for cancer surveillance (i.e. colonoscopy) for the affected individual and family members, since early surveillance and treatment has been shown to decrease morbidity and mortality (Kohlmann and Gruber 2014).

Genetics

Colorectal predisposition syndrome is inherited in an autosomal dominant manner. Polymerase proofreading associated polymerase (PPAP) is caused by pathogenic variants in two proofreading DNA repair genes POLD1 and POLE (Chubb et al. 2015). The protein products of these genes are involved in the replication of DNA and are also involved in DNA repair. POLE synthesizes the leading strand, while POLD synthesizes Okazaki fragments of the lagging strand. Mutations in the proof-reading exonuclease domains of these proteins result in the inability to correct mismatched bases during DNA replication. Pathogenic variants in the POLD1 gene result in predisposition to colorectal and endometrial cancer (Church et al. 2013). Tumors from individuals with these pathogenic variants are microsatellite stable, but acquire base substitution mutations (Palles et al. 2012). Reported pathogenic variants in POLD1 only include missense variants (Human Gene Mutation Database).

Testing Strategy

The DNA polymerase delta catalytic subunit is encoded by 26 exons (2-27) from the POLD1 gene on chromosome 19q13.3. Testing is accomplished by amplifying each coding exon and ~20 bp of adjacent noncoding sequence, then determining the nucleotide sequence using standard dideoxy Sanger sequencing methods and a capillary electrophoresis instrument. We will also sequence any single exon (Test #100) in family members of patients with a known mutation or to confirm research results.

Indications for Test

This test is suitable for individuals with multifocal, recurrent, and early onset (e.g. < 50 years) colorectal and endometrial tumors or a family history of these tumors. This test is specifically designed for heritable germline mutations and is not appropriate for the detection of somatic mutations in tumor tissue.

Gene

Official Gene Symbol OMIM ID
POLD1 174761
Inheritance Abbreviation
Autosomal Dominant AD
Autosomal Recessive AR
X-Linked XL
Mitochondrial MT

Disease

Name Inheritance OMIM ID
Colorectal cancer, susceptibility to, 10 612591

CONTACTS

Genetic Counselors
Geneticist
Citations
  • Chubb D, Broderick P, Frampton M, Kinnersley B, Sherborne A, Penegar S, Lloyd A, Ma YP, Dobbins SE, Houlston RS. 2015. Genetic Diagnosis of High-Penetrance Susceptibility for Colorectal Cancer (CRC) Is Achievable for a High Proportion of Familial CRC by Exome Sequencing. Journal of Clinical Oncology 33: 426–432. PubMed ID: 25559809
  • Church DN, Briggs SEW, Palles C, Domingo E, Kearsey SJ, Grimes JM, Gorman M, Martin L, Howarth KM, Hodgson SV, The NSECG Collaborators, Kaur K, Taylor J, Tomlinson IP. 2013. DNA polymerase and exonuclease domain mutations in endometrial cancer. Human Molecular Genetics 22: 2820–2828. PubMed ID: 23528559
  • Esteban-Jurado C. 2014. New genes emerging for colorectal cancer predisposition. World Journal of Gastroenterology 20: 1961. PubMed ID: 24587672
  • Human Gene Mutation Database (Bio-base).
  • Kohlmann W, Gruber SB. 2014. Lynch Syndrome. In: Pagon RA, Adam MP, Bird TD, Dolan CR, Fong C-T, and Stephens K, editors. GeneReviews™, Seattle (WA): University of Washington, Seattle. PubMed ID: 20301390
  • Palles C, Cazier J-B, Howarth KM, Domingo E, Jones AM, Broderick P, Kemp Z, Spain SL, Almeida EG, Salguero I, Sherborne A, Chubb D, Carvajal-Carmona LG, Ma Y, Kaur K, Dobbins S, Barclay E, Gorman M, Martin L, Kovac MB, Humphray S; CORGI Consortium; WGS500 Consortium, Lucassen A, Holmes CC, Bentley D, Donnelly P, Taylor J, Petridis C, Roylance R, Sawyer EJ, Kerr DJ, Clark S, Grimes J, Kearsey SE, Thomas HJ, McVean G, Houlston RS, Tomlinson I. 2012. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nature Genetics 45: 136–144. PubMed ID: 23263490
  • Siegel RL, Miller KD, Jemal A. 2015. Cancer statistics, 2015: Cancer Statistics, 2015. CA: A Cancer Journal for Clinicians 65: 5–29. PubMed ID: 25559415
  • Spier I, Holzapfel S, Altmüller J, Zhao B, Horpaopan S, Vogt S, Chen S, Morak M, Raeder S, Kayser K, Stienen D, Adam R, Nürnberg P, Plotz G, Holinski-Feder E, Lifton RP, Thiele H, Hoffmann P, Steinke V, Aretz S. 2015. Frequency and phenotypic spectrum of germline mutations in POLE and seven other polymerase genes in 266 patients with colorectal adenomas and carcinomas: POLE Mutations in Polyposis. International Journal of Cancer n/a–n/a. PubMed ID: 25529843
Order Kits
TEST METHODS

Bi-Directional Sanger Sequencing

Test Procedure

Nomenclature for sequence variants was from the Human Genome Variation Society (http://www.hgvs.org).  As required, DNA is extracted from the patient specimen.  PCR is used to amplify the indicated exons plus additional flanking non-coding sequence.  After cleaning of the PCR products, cycle sequencing is carried out using the ABI Big Dye Terminator v.3.0 kit.  Products are resolved by electrophoresis on an ABI 3730xl capillary sequencer.  In most cases, sequencing is performed in both forward and reverse directions; in some cases, sequencing is performed twice in either the forward or reverse directions.  In nearly all cases, the full coding region of each exon as well as 20 bases of non-coding DNA flanking the exon are sequenced.

Analytical Validity

As of March 2016, we compared 17.37 Mb of Sanger DNA sequence generated at PreventionGenetics to NextGen sequence generated in other labs. We detected only 4 errors in our Sanger sequences, and these were all due to allele dropout during PCR. For Proficiency Testing, both external and internal, in the 12 years of our lab operation we have Sanger sequenced roughly 8,800 PCR amplicons. Only one error has been identified, and this was due to sequence analysis error.

Our Sanger sequencing is capable of detecting virtually all nucleotide substitutions within the PCR amplicons. Similarly, we detect essentially all heterozygous or homozygous deletions within the amplicons. Homozygous deletions which overlap one or more PCR primer annealing sites are detectable as PCR failure. Heterozygous deletions which overlap one or more PCR primer annealing sites are usually not detected (see Analytical Limitations). All heterozygous insertions within the amplicons up to about 100 nucleotides in length appear to be detectable. Larger heterozygous insertions may not be detected. All homozygous insertions within the amplicons up to about 300 nucleotides in length appear to be detectable. Larger homozygous insertions may masquerade as homozygous deletions (PCR failure).

Analytical Limitations

In exons where our sequencing did not reveal any variation between the two alleles, we cannot be certain that we were able to PCR amplify both of the patient’s alleles. Occasionally, a patient may carry an allele which does not amplify, due for example to a deletion or a large insertion. In these cases, the report contains no information about the second allele.

Similarly, our sequencing tests have almost no power to detect duplications, triplications, etc. of the gene sequences.

In most cases, only the indicated exons and roughly 20 bp of flanking non-coding sequence on each side are analyzed. Test reports contain little or no information about other portions of the gene, including many regulatory regions.

In nearly all cases, we are unable to determine the phase of sequence variants. In particular, when we find two likely causative mutations for recessive disorders, we cannot be certain that the mutations are on different alleles.

Our ability to detect minor sequence variants, due for example to somatic mosaicism is limited. Sequence variants that are present in less than 50% of the patient’s nucleated cells may not be detected.

Runs of mononucleotide repeats (eg (A)n or (T)n) with n >8 in the reference sequence are generally not analyzed because of strand slippage during PCR and cycle sequencing.

Unless otherwise indicated, the sequence data that we report are based on DNA isolated from a specific tissue (usually leukocytes). Test reports contain no information about gene sequences in other tissues.

Deletion/Duplication Testing Via Array Comparative Genomic Hybridization

Test Procedure

Equal amounts of genomic DNA from the patient and a gender matched reference sample are amplified and labeled with Cy3 and Cy5 dyes, respectively. To prevent any sample cross contamination, a unique sample tracking control is added into each patient sample. Each labeled patient product is then purified, quantified, and combined with the same amount of reference product. The combined sample is loaded onto the designed array and hybridized for at least 22-42 hours at 65°C. Arrays are then washed and scanned immediately with 2.5 µM resolution. Only data for the gene(s) of interest for each patient are extracted and analyzed.

Analytical Validity

PreventionGenetics' high density gene-centric custom designed aCGH enables the detection of relatively small deletions and duplications within a single exon of a given gene or deletions and duplications encompassing the entire gene. PreventionGenetics has established and verified this test's accuracy and precision.

Analytical Limitations

Our dense probe coverage may allow detection of deletions/duplications down to 100 bp; however due to limitations and probe spacing this cannot be guaranteed across all exons of all genes. Therefore, some copy number changes smaller than 100-300 bp within a targeted large exon may not be detected by our array.

This array may not detect deletions and duplications present at low levels of mosaicism or those present in genes that have pseudogene copies or repeats elsewhere in the genome.

aCGH will not detect balanced translocations, inversions, or point mutations that may be responsible for the clinical phenotype.

Breakpoints, if occurring outside the targeted gene, may be hard to define.

The sensitivity of this assay may be reduced when DNA is extracted by an outside laboratory.

Order Kits

Ordering Options


myPrevent - Online Ordering
  • The test can be added to your online orders in the Summary and Pricing section.
  • Once the test has been added log in to myPrevent to fill out an online requisition form.
REQUISITION FORM
  • A completed requisition form must accompany all specimens.
  • Billing information along with specimen and shipping instructions are within the requisition form.
  • All testing must be ordered by a qualified healthcare provider.

SPECIMEN TYPES
WHOLE BLOOD

(Delivery accepted Monday - Saturday)

  • Collect 3 ml -5 ml (5 ml preferred) of whole blood in EDTA (purple top tube) or ACD (yellow top tube). For Test #500-DNA Banking only, collect 10 ml -20 ml of whole blood.
  • For small babies, we require a minimum of 1 ml of blood.
  • Only one blood tube is required for multiple tests.
  • Ship blood tubes at room temperature in an insulated container. Do not freeze blood.
  • During hot weather, include a frozen ice pack in the shipping container. Place a paper towel or other thin material between the ice pack and the blood tube.
  • In cold weather, include an unfrozen ice pack in the shipping container as insulation.
  • At room temperature, blood specimen is stable for up to 48 hours.
  • If refrigerated, blood specimen is stable for up to one week.
  • Label the tube with the patient name, date of birth and/or ID number.

DNA

(Delivery accepted Monday - Saturday)

  • Send in screw cap tube at least 5 µg -10 µg of purified DNA at a concentration of at least 20 µg/ml for NGS and Sanger tests and at least 5 µg of purified DNA at a concentration of at least 100 µg/ml for gene-centric aCGH, MLPA, and CMA tests, minimum 2 µg for limited specimens.
  • For requests requiring more than one test, send an additional 5 µg DNA per test ordered when possible.
  • DNA may be shipped at room temperature.
  • Label the tube with the composition of the solute, DNA concentration as well as the patient’s name, date of birth, and/or ID number.
  • We only accept genomic DNA for testing. We do NOT accept products of whole genome amplification reactions or other amplification reactions.

CELL CULTURE

(Delivery preferred Monday - Thursday)

  • PreventionGenetics should be notified in advance of arrival of a cell culture.
  • Culture and send at least two T25 flasks of confluent cells.
  • Some panels may require additional flasks (dependent on size of genes, amount of Sanger sequencing required, etc.). Multiple test requests may also require additional flasks. Please contact us for details.
  • Send specimens in insulated, shatterproof container overnight.
  • Cell cultures may be shipped at room temperature or refrigerated.
  • Label the flasks with the patient name, date of birth, and/or ID number.
  • We strongly recommend maintaining a local back-up culture. We do not culture cells.
loading Loading... ×