Forms

Chronic Hereditary Pancreatitis via the SPINK1 Gene

  • Summary and Pricing
  • Clinical Features and Genetics
  • Citations
  • Methods
  • Ordering/Specimens
Order Kits
TEST METHODS

Sequencing

Test Code Test Copy GenesIndividual Gene PriceCPT Code Copy CPT Codes
1401 SPINK1$540.00 81404 Add to Order
Targeted Testing

For ordering targeted known variants, please proceed to our Targeted Variants landing page.

Turnaround Time

The great majority of tests are completed within 18 days.

Clinical Sensitivity

The p.N34S mutation in exon 4 of SPINK1 is the most common alteration identified in individuals with SPINK1-associated HP (http://www.uni-leipzig.de/pancreasmutation/db.html). Our full gene sequencing test is expected to detect >98% of SPINK1 causative mutations.

See More

See Less

Deletion/Duplication Testing via aCGH

Test Code Test Copy GenesIndividual Gene PriceCPT Code Copy CPT Codes
600 SPINK1$690.00 81479 Add to Order
Pricing Comment

# of Genes Ordered

Total Price

1

$690

2

$730

3

$770

4-10

$840

11-30

$1,290

31-100

$1,670

Over 100

Call for quote

Turnaround Time

The great majority of tests are completed within 28 days.

Clinical Features

Pancreatitis is characterized by recurrent episodes of inflammation of the pancreas in both adults and children (Chen and Ferec 2009). Symptoms usually begin in late childhood with an episode of acute pancreatitis and include severe upper abdominal burning pain radiating to the back, nausea, and vomiting that is worsened with eating (acute pancreatitis). Recurrent acute pancreatitis leads to chronic pancreatitis due to persistent inflammation. Chronic pancreatitis usually develops by early adulthood in affected individuals and symptoms include occasional or frequent abdominal pain of varying severity, flatulence, and bloating. Unexplained weight loss may occur from a lack of pancreatic enzymes hindering digestion (Rebours et al. 2012). Episodes of pancreatitis can lead to permanent tissue damage and loss of pancreatic function. Chronic pancreatitis increases the risk for diabetes and pancreatic cancer, more so with smoking and use of alcohol (Yadav and Whitcomb 2010). Causative mutations in several genes have been identified in chronic pancreatitis (Joergensen et al. 2010). Genetic testing can aid in differential diagnosis of chronic pancreatitis from other disorders such as Shwachman-Diamond syndrome and Johanson-Blizzard syndrome which also present with pancreatitis (LaRusch et al. 2014).

Genetics

Hereditary chronic pancreatitis (HP) occurs at an estimated incidence of 0.3/100,000 in western countries (Joergensen et al. 2010) and presents as autosomal dominant or recessive with incomplete penetrance (80%) depending upon the gene that is involved. Mutations in the serine protease inhibitor Kazal type 1 (SPINK1) gene are known to be causative for autosomal recessive HP (Keiles et al. 2006). Compound heterozygosity for mutations in SPINK1 and either CTRC/CFTR or CASR suggests a digenic mode of inheritance (Masson et al. 2013; Chen and Ferec 2009). In rare cases, SPINK1 mutations have been found in chronic pancreatitis patients with a PRSS1 mutation.

The SPINK1 gene encodes a pancreatic secretory trypsin inhibitor which protects the pancreas from damage due to recurrent or persistent trypsin activation (Horii et al. 1987). SPINK1 causative mutations have also been identified in individuals with tropical calcific pancreatitis (OMIM#608189) (Chandak et al. 2002). Mutations in PRSS1, CFTR, and CTRC are also known to be involved in the onset of HP (OMIM#167800) (Audrezet et al. 2002). The types of mutations reported in SPINK1 include missense, splicing, regulatory, deletions and insertions (Human Gene Mutation Database). The c.101A>G (p.Asn34Ser) and c.194+2T>C variants are commonly found causative mutations within the US/Europe and Asian populations (LaRusch et al. 2014).

Testing Strategy

This test involves bidirectional Sanger sequencing using genomic DNA of all 4 coding exons of the SPINK1 gene plus ~20 bp of flanking non-coding DNA on each side and coverage ~240 bp upstream from the start codon. We will also sequence any single exon (Test #100) or pair of exons (Test #200) in family members of patients with known mutations or to confirm research results.

Indications for Test

Individuals with the following criteria should be considered for genetic testing (Ellis et al. 2001): Recurrent unexplained attacks of acute pancreatitis and a positive family history, unexplained chronic pancreatitis and a positive family history, unexplained chronic pancreatitis without a positive family history after exclusion of other causes such as hyperlipidaemia type I, familiar hypercalciuric hypercalcemia (FBH), hereditary hyperthyroidism and autoimmune pancreatitis, and unexplained pancreatitis episodes in children.

Gene

Official Gene Symbol OMIM ID
SPINK1 167790
Inheritance Abbreviation
Autosomal Dominant AD
Autosomal Recessive AR
X-Linked XL
Mitochondrial MT

Related Test

Name
Chronic Pancreatitis Sequencing Panel

CONTACTS

Genetic Counselors
Geneticist
Citations
  • Audrezet M-P, Chen J-M, Marechal C Le, Ruszniewski P, Robaszkiewicz M, Raguenes O, Quere I, Scotet V, Ferec C. 2002. Determination of the relative contribution of three genes–the cystic fibrosis transmembrane conductance regulator gene, the cationic trypsinogen gene, and the pancreatic secretory trypsin inhibitor gene–to the etiology of idiopathic chronic pancreatitis. European Journal of Human Genetics 10: 100-106. PubMed ID: 11938439
  • Chandak GR, Idris MM, Reddy DN, Bhaskar S, Sriram PVJ, Singh L. 2002. Mutations in the pancreatic secretory trypsin inhibitor gene (PSTI/SPINK1) rather than the cationic trypsinogen gene (PRSS1) are significantly associated with tropical calcific pancreatitis. Journal of medical genetics 39: 347–351. PubMed ID: 12011155
  • Chen J-M, Férec C. 2009. Chronic pancreatitis: genetics and pathogenesis. Annu Rev Genomics Hum Genet 10: 63–87. PubMed ID: 19453252
  • Ellis, I, Lerch, MM, Whitcomb, DC. 2001. Genetic testing for hereditary pancreatitis: guidelines for indications, counselling, consent and privacy issues. Pancreatology 1:405-415. PubMed ID: 12120217
  • Horii A, Kobayashi T, Tomita N, Yamamoto T, Fukushige S, Murotsu T, Ogawa M, Mori T, Matsubara K. 1987. Primary structure of human pancreatic secretory trypsin inhibitor (PSTI) gene. Biochem. Biophys. Res. Commun. 149: 635–641. PubMed ID: 3501289
  • Human Gene Mutation Database (Bio-base).
  • Joergensen, MT, Brusgaard, K, Crüger, DG, Gerdes, AM, Schaffalitzky de Muckadell, OB. 2010. Genetic, epidemiological, and clinical aspects of hereditary pancreatitis: a population-based cohort study in Denmark. Am. J. Gastroenterol. 105:1876-1883. PubMed ID: 20502448
  • Keiles S, Kammesheidt A. 2006. Identification of CFTR, PRSS1, and SPINK1 mutations in 381 patients with pancreatitis. Pancreas 33: 221–227. PubMed ID: 17003641
  • LaRusch J, Solomon S, Whitcomb DC. 2014. Pancreatitis Overview. In: Pagon RA, Adam MP, Ardinger HH, Bird TD, Dolan CR, Fong C-T, Smith RJ, and Stephens K, editors. GeneReviews(®), Seattle (WA): University of Washington, Seattle. PubMed ID: 24624459
  • Masson, E, Chen, JM, Audrézet, MP, Cooper, DN, Férec, C. 2013. A Conservative Assessment of the Major Genetic Causes of Idiopathic Chronic Pancreatitis: Data from a Comprehensive Analysis of PRSS1, SPINK1, CTRC and CFTR Genes in 253 Young French Patients. PLoS One 8:e73522. PubMed ID: 23951356
  • Rebours V, Lévy P, Ruszniewski P. 2012. An overview of hereditary pancreatitis. Dig Liver Dis 44: 8–15. PubMed ID: 21907651
  • Yadav D, Whitcomb DC. 2010. The role of alcohol and smoking in pancreatitis. Nat Rev Gastroenterol Hepatol 7: 131–145. PubMed ID: 20125091
Order Kits
TEST METHODS

Bi-Directional Sanger Sequencing

Test Procedure

Nomenclature for sequence variants was from the Human Genome Variation Society (http://www.hgvs.org).  As required, DNA is extracted from the patient specimen.  PCR is used to amplify the indicated exons plus additional flanking non-coding sequence.  After cleaning of the PCR products, cycle sequencing is carried out using the ABI Big Dye Terminator v.3.0 kit.  Products are resolved by electrophoresis on an ABI 3730xl capillary sequencer.  In most cases, sequencing is performed in both forward and reverse directions; in some cases, sequencing is performed twice in either the forward or reverse directions.  In nearly all cases, the full coding region of each exon as well as 20 bases of non-coding DNA flanking the exon are sequenced.

Analytical Validity

As of March 2016, we compared 17.37 Mb of Sanger DNA sequence generated at PreventionGenetics to NextGen sequence generated in other labs. We detected only 4 errors in our Sanger sequences, and these were all due to allele dropout during PCR. For Proficiency Testing, both external and internal, in the 12 years of our lab operation we have Sanger sequenced roughly 8,800 PCR amplicons. Only one error has been identified, and this was due to sequence analysis error.

Our Sanger sequencing is capable of detecting virtually all nucleotide substitutions within the PCR amplicons. Similarly, we detect essentially all heterozygous or homozygous deletions within the amplicons. Homozygous deletions which overlap one or more PCR primer annealing sites are detectable as PCR failure. Heterozygous deletions which overlap one or more PCR primer annealing sites are usually not detected (see Analytical Limitations). All heterozygous insertions within the amplicons up to about 100 nucleotides in length appear to be detectable. Larger heterozygous insertions may not be detected. All homozygous insertions within the amplicons up to about 300 nucleotides in length appear to be detectable. Larger homozygous insertions may masquerade as homozygous deletions (PCR failure).

Analytical Limitations

In exons where our sequencing did not reveal any variation between the two alleles, we cannot be certain that we were able to PCR amplify both of the patient’s alleles. Occasionally, a patient may carry an allele which does not amplify, due for example to a deletion or a large insertion. In these cases, the report contains no information about the second allele.

Similarly, our sequencing tests have almost no power to detect duplications, triplications, etc. of the gene sequences.

In most cases, only the indicated exons and roughly 20 bp of flanking non-coding sequence on each side are analyzed. Test reports contain little or no information about other portions of the gene, including many regulatory regions.

In nearly all cases, we are unable to determine the phase of sequence variants. In particular, when we find two likely causative mutations for recessive disorders, we cannot be certain that the mutations are on different alleles.

Our ability to detect minor sequence variants, due for example to somatic mosaicism is limited. Sequence variants that are present in less than 50% of the patient’s nucleated cells may not be detected.

Runs of mononucleotide repeats (eg (A)n or (T)n) with n >8 in the reference sequence are generally not analyzed because of strand slippage during PCR and cycle sequencing.

Unless otherwise indicated, the sequence data that we report are based on DNA isolated from a specific tissue (usually leukocytes). Test reports contain no information about gene sequences in other tissues.

Deletion/Duplication Testing Via Array Comparative Genomic Hybridization

Test Procedure

Equal amounts of genomic DNA from the patient and a gender matched reference sample are amplified and labeled with Cy3 and Cy5 dyes, respectively. To prevent any sample cross contamination, a unique sample tracking control is added into each patient sample. Each labeled patient product is then purified, quantified, and combined with the same amount of reference product. The combined sample is loaded onto the designed array and hybridized for at least 22-42 hours at 65°C. Arrays are then washed and scanned immediately with 2.5 µM resolution. Only data for the gene(s) of interest for each patient are extracted and analyzed.

Analytical Validity

PreventionGenetics' high density gene-centric custom designed aCGH enables the detection of relatively small deletions and duplications within a single exon of a given gene or deletions and duplications encompassing the entire gene. PreventionGenetics has established and verified this test's accuracy and precision.

Analytical Limitations

Our dense probe coverage may allow detection of deletions/duplications down to 100 bp; however due to limitations and probe spacing this cannot be guaranteed across all exons of all genes. Therefore, some copy number changes smaller than 100-300 bp within a targeted large exon may not be detected by our array.

This array may not detect deletions and duplications present at low levels of mosaicism or those present in genes that have pseudogene copies or repeats elsewhere in the genome.

aCGH will not detect balanced translocations, inversions, or point mutations that may be responsible for the clinical phenotype.

Breakpoints, if occurring outside the targeted gene, may be hard to define.

The sensitivity of this assay may be reduced when DNA is extracted by an outside laboratory.

Order Kits

Ordering Options


myPrevent - Online Ordering
  • The test can be added to your online orders in the Summary and Pricing section.
  • Once the test has been added log in to myPrevent to fill out an online requisition form.
REQUISITION FORM
  • A completed requisition form must accompany all specimens.
  • Billing information along with specimen and shipping instructions are within the requisition form.
  • All testing must be ordered by a qualified healthcare provider.

SPECIMEN TYPES
WHOLE BLOOD

(Delivery accepted Monday - Saturday)

  • Collect 3 ml -5 ml (5 ml preferred) of whole blood in EDTA (purple top tube) or ACD (yellow top tube). For Test #500-DNA Banking only, collect 10 ml -20 ml of whole blood.
  • For small babies, we require a minimum of 1 ml of blood.
  • Only one blood tube is required for multiple tests.
  • Ship blood tubes at room temperature in an insulated container. Do not freeze blood.
  • During hot weather, include a frozen ice pack in the shipping container. Place a paper towel or other thin material between the ice pack and the blood tube.
  • In cold weather, include an unfrozen ice pack in the shipping container as insulation.
  • At room temperature, blood specimen is stable for up to 48 hours.
  • If refrigerated, blood specimen is stable for up to one week.
  • Label the tube with the patient name, date of birth and/or ID number.

DNA

(Delivery accepted Monday - Saturday)

  • Send in screw cap tube at least 5 µg -10 µg of purified DNA at a concentration of at least 20 µg/ml for NGS and Sanger tests and at least 5 µg of purified DNA at a concentration of at least 100 µg/ml for gene-centric aCGH, MLPA, and CMA tests, minimum 2 µg for limited specimens.
  • For requests requiring more than one test, send an additional 5 µg DNA per test ordered when possible.
  • DNA may be shipped at room temperature.
  • Label the tube with the composition of the solute, DNA concentration as well as the patient’s name, date of birth, and/or ID number.
  • We only accept genomic DNA for testing. We do NOT accept products of whole genome amplification reactions or other amplification reactions.

CELL CULTURE

(Delivery preferred Monday - Thursday)

  • PreventionGenetics should be notified in advance of arrival of a cell culture.
  • Culture and send at least two T25 flasks of confluent cells.
  • Some panels may require additional flasks (dependent on size of genes, amount of Sanger sequencing required, etc.). Multiple test requests may also require additional flasks. Please contact us for details.
  • Send specimens in insulated, shatterproof container overnight.
  • Cell cultures may be shipped at room temperature or refrigerated.
  • Label the flasks with the patient name, date of birth, and/or ID number.
  • We strongly recommend maintaining a local back-up culture. We do not culture cells.
loading Loading... ×